COMP 761: Lecture 2 - Proofs

David Rolnick

September 4, 2020

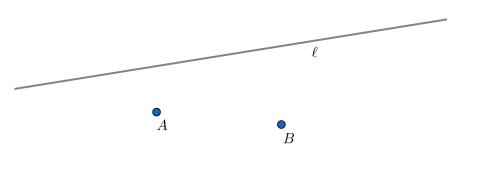
David Rolnick

COMP 761: Proofs

Sep 4, 2020 1 / 27

Problem

You would like to travel from your work (point *A*) to your house (point *B*), stopping off at some point along the river (line ℓ) to gather water. What's an algorithm for finding the shortest total distance you have to travel?



Davi	n	RO	Inic	ĸ

Image: A math a math

• TA: Vincent Luczkow

• • • • • • • • • • • •

- TA: Vincent Luczkow
- Vincent's office hours: 11-12 am Thursdays

A D M A A A M M

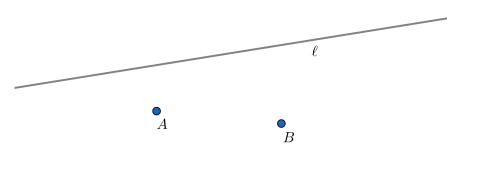
- 4 ∃ →

- TA: Vincent Luczkow
- Vincent's office hours: 11-12 am Thursdays
- Slack workspace for class discussions (will send invites soon)

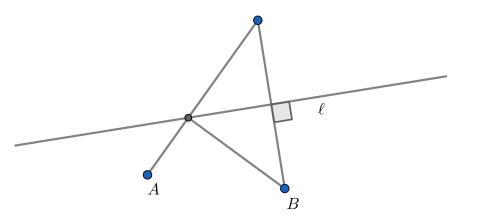
- TA: Vincent Luczkow
- Vincent's office hours: 11-12 am Thursdays
- Slack workspace for class discussions (will send invites soon)
- Problem Set 1 will be released Tuesday, due Friday Sept 18

Problem

You would like to travel from your work (point *A*) to your house (point *B*), stopping off at some point along the river (line ℓ) to gather water. What's an algorithm for finding the shortest total distance you have to travel?



Answer



▲白 → ▲圖 → ▲ 臣 → ▲ 臣 →

A proof is a set of logical steps that explains why an answer is true.

< 47 ▶

A proof is a set of logical steps that explains why an answer is true.

Convince someone else

< 17 ▶

A proof is a set of logical steps that explains why an answer is true.

- Convince someone else
- Convince yourself, make sure you didn't make a mistake

A proof is a set of logical steps that explains why an answer is true.

- Convince someone else
- Convince yourself, make sure you didn't make a mistake
- Sometimes provide more insight into what is going on

A proof is a set of logical steps that explains why an answer is true.

- Convince someone else
- Convince yourself, make sure you didn't make a mistake
- Sometimes provide more insight into what is going on

You can think of an *answer* as something short (x = 2) but a proof as the full *solution* (this is why x = 2)

D	- 1	D - 1		١.
Davi	a	Ro	Inic	ĸ

• You will be expected to provide proofs on the problem sets.

- 4 ∃ →

- You will be expected to provide proofs on the problem sets.
- In class, sometimes full proofs, sometimes just intuitions for why true, if proof is hard

- You will be expected to provide proofs on the problem sets.
- In class, sometimes full proofs, sometimes just intuitions for why true, if proof is hard
- Useful to be able to understand a proof might look like, even if we don't always dive into it

1. Indicate how you are making each conclusion

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1. Indicate how you are making each conclusion

• Good: Combining equations (1) and (5), we find that x = y + 1.

A D M A A A M M

1. Indicate how you are making each conclusion

- Good: Combining equations (1) and (5), we find that x = y + 1.
- Bad: We get x = y + 1.

< < >>

1. Indicate how you are making each conclusion

- Good: Combining equations (1) and (5), we find that x = y + 1.
- Bad: *We get* x = y + 1.

This is also good to make sure you aren't assuming what you are trying to prove!

2. Define new things clearly (just like in code)

David Rolnick

2. Define new things clearly (just like in code)

Good: Let m be the right-hand side of the previous equation.
 Then, the algorithm runs in time O(n + m), where n is the number of bits in the input.

2. Define new things clearly (just like in code)

- Good: Let m be the right-hand side of the previous equation.
 Then, the algorithm runs in time O(n + m), where n is the number of bits in the input.
- Bad: Then, the algorithm runs in time O(n + the right-hand side).

3. Use words in addition to equations

Image: A match a ma

3. Use words in addition to equations

• Good: Because $x = y^2$ and $y = z^2$, we have

$$x=z^4$$
.

< < >>

3. Use words in addition to equations

• Good: Because $x = y^2$ and $y = z^2$, we have

$$x = z^4$$

.

• Bad:
$$x = y^2$$
, $y = z^2$, $\Rightarrow x = z^4$.

< < >>

3. Use words in addition to equations

• Good: Because $x = y^2$ and $y = z^2$, we have

$$x = z^4$$

• Bad:
$$x = y^2, y = z^2, \Rightarrow x = z^4$$
.

Also, remember to break into paragraphs, otherwise it can get very hard to read.

4. Aim for a concise, formal style. Use "we" instead of "I" or "you".

4. Aim for a concise, formal style. Use "we" instead of "I" or "you".

• Good: Squaring both sides of the equation, we obtain $(x - 1)^2 = \sin(z - \sqrt{3}\omega).$

4. Aim for a concise, formal style. Use "we" instead of "I" or "you".

- Good: Squaring both sides of the equation, we obtain $(x-1)^2 = \sin(z-\sqrt{3}\omega).$
- Bad: What happens if you square both sides of the equation? You get $(x 1)^2 = \sin(z \sqrt{3}\omega)!$

5. Figures are great!

5. Figures are great!

• Though remember to define anything in the main body of the text, rather than just in the figure.

A D M A A A M M

5. Figures are great!

- Though remember to define anything in the main body of the text, rather than just in the figure.
- Good: In figure 1, point P is the intersection of segment AB with line L.

< < >>

6. If your approach is complicated, describe it and break it up.

David Rolnick

- 4 ∃ →

Proof-writing tips

6. If your approach is complicated, describe it and break it up.

• Good: We will prove the result by induction, dividing into 3 cases according to whether a is positive, negative, or 0. We begin by proving the following Claim.

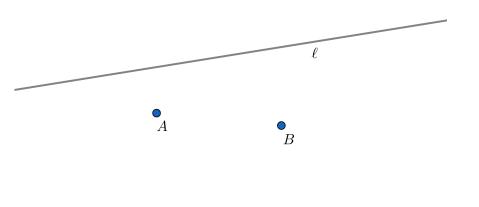
Claim: b is even. Proof of Claim:

Having proven the claim, we proceed to our three cases:

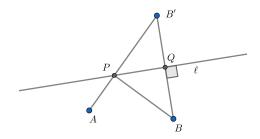
```
Case 1: a > 0
Proof in Case 1: ....
```

Problem

You would like to travel from your work (point *A*) to your house (point *B*), stopping off at some point along the river (line ℓ) to gather water. What's an algorithm for finding the shortest total distance you have to travel?



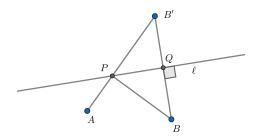
Proof



To minimize the distance traveled, it is optimal to travel from *A* to some point *P* along ℓ , and then from *P* to *B*. We therefore must find the point *P* on ℓ such that AP + BP is minimized.

Let *B'* be the reflection of point *B* across line ℓ (that is, *BB'* is perpendicular to ℓ and *B* and *B'* are equidistant from ℓ), as shown in the Figure. Let *Q* be the intersection of *BB'* with ℓ .

Example proof



Claim: for any point *P* on ℓ , the distance *B'P* equals the distance *BP*. **Proof of Claim:** By the Pythagorean Theorem on right triangle *PQB*:

$$BP^2 = PQ^2 + BQ^2.$$

Similarly, from the Pythagorean Theorem on right triangle PQB', we obtain:

$$B'P^2 = PQ^2 + B'Q^2.$$

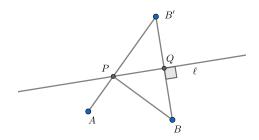
Combining these two equations and using the fact that B'Q = BQ, we conclude that BP = B'P, proving the claim.

David Rolnick

COMP 761: Proofs

Sep 4, 2020 16 / 27

Example proof



Now, since B'P = BP for any P, we know that minimizing AP + BP is equivalent to minimizing AP + B'P. Since a straight line is the shortest distance between two points, the optimum is attained where P is the intersection of AB' with ℓ .

Thus, our algorithm is to reflect *B* across ℓ to *B'* and to take the intersection of *AB'* with ℓ .

Problem (Monty Hall).

You are in a game show where you can win a prize. There are three doors. Behind two of them are goats. Behind the third is a car. (Assume for this problem that you want a car more than a goat.) You pick a door at random. The host (who knows what is where) then opens one of the other doors, revealing a goat. You can either stick with your door, or switch to the other one. Which is better?

Davi		

<ロ> (日) (日) (日) (日) (日)

There are two cases to be considered: either the initial pick is a car or a goat.

There are two cases to be considered: either the initial pick is a car or a goat.

Case 1. The initial pick is a car.

There are two cases to be considered: either the initial pick is a car or a goat.

Case 1. The initial pick is a car.

In this case, it is optimal to stay with the initial pick.

A D M A A A M M

There are two cases to be considered: either the initial pick is a car or a goat.

Case 1. The initial pick is a car.

In this case, it is optimal to stay with the initial pick.

Case 2. The initial pick is a goat.

There are two cases to be considered: either the initial pick is a car or a goat.

Case 1. The initial pick is a car.

In this case, it is optimal to stay with the initial pick.

Case 2. The initial pick is a goat.

In this case, the remaining door must be the car, so it is optimal to switch.

There are two cases to be considered: either the initial pick is a car or a goat.

Case 1. The initial pick is a car.

In this case, it is optimal to stay with the initial pick.

Case 2. The initial pick is a goat.

In this case, the remaining door must be the car, so it is optimal to switch.

Since Case 1 occurs with 1/3 probability and Case 2 with 2/3 probability, 2/3 of the time it will be optimal to switch. Therefore, switching is the best strategy.

Davi		

イロト イヨト イヨト イヨ

- Write down assumptions/conditions mathematically
 - This is not always easy
 - Framing it the right way is sometimes half the problem

< < >>

- Write down assumptions/conditions mathematically
 - This is not always easy
 - Framing it the right way is sometimes half the problem
- 2 Try out a small example
 - By hand or via code
 - Good even if you don't know what you are looking for

- Write down assumptions/conditions mathematically
 - This is not always easy
 - Framing it the right way is sometimes half the problem
- 2 Try out a small example
 - By hand or via code
 - Good even if you don't know what you are looking for
- Think backwards from what you want
 - Make guesses about intermediate things that might be useful if true
 - Try to disprove them first, then try to prove them
 - But when writing the proof, work forwards

- Write down assumptions/conditions mathematically
 - This is not always easy
 - Framing it the right way is sometimes half the problem
- 2 Try out a small example
 - By hand or via code
 - Good even if you don't know what you are looking for
- Think backwards from what you want
 - Make guesses about intermediate things that might be useful if true
 - Try to disprove them first, then try to prove them
 - But when writing the proof, work forwards
- Think about what info you haven't used
 - What conditions are necessary or else it wouldn't work?
 - Good sign you'll need to use them!

Problem.

Out of any 1000 integers, prove that some subset of them sum to a multiple of 1000.

• • • • • • • • • • • •

David Rolnick

• Maybe we can try out an example

- Maybe we can try out an example
- But 1000 is a large number

- Maybe we can try out an example
- But 1000 is a large number
- Let's try 10 numbers

A D M A A A M M

- 4 ∃ →

- Maybe we can try out an example
- But 1000 is a large number
- Let's try 10 numbers
- Maybe 1, 2, 3, 4, 5, 6, 6, 8, 9, 10...whoops that is easy

< 🗇 🕨 < 🖃 >

- Maybe we can try out an example
- But 1000 is a large number
- Let's try 10 numbers
- Maybe 1, 2, 3, 4, 5, 6, 6, 8, 9, 10...whoops that is easy
- How can that be harder?

David Rolnick

• Let's try picking them one by one so at least the sum of all of them isn't divisible by 10

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1+2+3+5=11

4 A N

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1+2+3+5=11
- 1 + 2 + 3 + 5 + 6 = 17

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1+2+3+5=11
- 1 + 2 + 3 + 5 + 6 = 17
- 1 + 2 + 3 + 5 + 6 + 7 = 24

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1+2+3+5=11
- 1 + 2 + 3 + 5 + 6 = 17
- 1 + 2 + 3 + 5 + 6 + 7 = 24
- 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1+2+3+5=11
- 1 + 2 + 3 + 5 + 6 = 17
- 1 + 2 + 3 + 5 + 6 + 7 = 24
- 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32
- $\bullet \ 1+2+3+5+6+7+8+1=43$

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1+2+3+5=11
- 1 + 2 + 3 + 5 + 6 = 17
- 1 + 2 + 3 + 5 + 6 + 7 = 24
- 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 = 43
- $\bullet \ 1+2+3+5+6+7+8+1+1=44$

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1 + 2 + 3 + 5 = 11
- 1 + 2 + 3 + 5 + 6 = 17
- 1 + 2 + 3 + 5 + 6 + 7 = 24
- 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 = 43
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 + 1 = 44
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 + 1 + 1 = 45

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1 + 2 + 3 + 5 = 11
- 1 + 2 + 3 + 5 + 6 = 17
- 1 + 2 + 3 + 5 + 6 + 7 = 24
- 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 = 43
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 + 1 = 44
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 + 1 + 1 = 45

- Let's try picking them one by one so at least the sum of all of them isn't divisible by 10
- 1 = 1
- 1 + 2 = 3
- 1 + 2 + 3 = 6
- 1 + 2 + 3 + 5 = 11
- 1 + 2 + 3 + 5 + 6 = 17
- 1 + 2 + 3 + 5 + 6 + 7 = 24
- 1 + 2 + 3 + 5 + 6 + 7 + 8 = 32
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 = 43
- 1 + 2 + 3 + 5 + 6 + 7 + 8 + 1 + 1 = 44
- $\bullet \ 1+2+3+5+6+7+8+1+1+1=45$
- 8 + 1 + 1 = 10

David Rolnick

• Will some of these partial sums always have the same last digit?

- Will some of these partial sums always have the same last digit?
- Yeah! There are 10 sums, and only 9 possible non-0 last digits

- Will some of these partial sums always have the same last digit?
- Yeah! There are 10 sums, and only 9 possible non-0 last digits
- (Sidenote: This is called the *Pigeonhole Principle*, and it's often really useful even though it's really obvious.)

- Will some of these partial sums always have the same last digit?
- Yeah! There are 10 sums, and only 9 possible non-0 last digits
- (Sidenote: This is called the *Pigeonhole Principle*, and it's often really useful even though it's really obvious.)
- So are we done for 10 numbers?

- Will some of these partial sums always have the same last digit?
- Yeah! There are 10 sums, and only 9 possible non-0 last digits
- (Sidenote: This is called the *Pigeonhole Principle*, and it's often really useful even though it's really obvious.)
- So are we done for 10 numbers?
- Yes!

- Will some of these partial sums always have the same last digit?
- Yeah! There are 10 sums, and only 9 possible non-0 last digits
- (Sidenote: This is called the *Pigeonhole Principle*, and it's often really useful even though it's really obvious.)
- So are we done for 10 numbers?
- Yes!
- What about 1000?

- Will some of these partial sums always have the same last digit?
- Yeah! There are 10 sums, and only 9 possible non-0 last digits
- (Sidenote: This is called the *Pigeonhole Principle*, and it's often really useful even though it's really obvious.)
- So are we done for 10 numbers?
- Yes!
- What about 1000?
- Same idea...

David Rolnick

COMP 761: Proofs

<u>≣ ▶ ৰ ≣ ▶ ≣ ৩৭৫</u> Sep 4, 2020 26 / 27

• • • • • • • • • • • •

Let the 1000 integers be $a_1, a_2, \ldots, a_{1000}$.

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

< < >> < <</p>

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

Suppose that some S_k is divisible by 1000. In that case, we are done.

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

Suppose that some S_k is divisible by 1000. In that case, we are done.

Otherwise, there are only 999 possible remainders for the 1000 different S_k when divided by 1000.

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

Suppose that some S_k is divisible by 1000. In that case, we are done.

Otherwise, there are only 999 possible remainders for the 1000 different S_k when divided by 1000. By the Pigeonhole Principle, there must be some *j*, *k* such that S_j and S_k have the same remainder.

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

Suppose that some S_k is divisible by 1000. In that case, we are done.

Otherwise, there are only 999 possible remainders for the 1000 different S_k when divided by 1000. By the Pigeonhole Principle, there must be some j, k such that S_j and S_k have the same remainder.

Suppose without loss of generality that j < k.

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

Suppose that some S_k is divisible by 1000. In that case, we are done.

Otherwise, there are only 999 possible remainders for the 1000 different S_k when divided by 1000. By the Pigeonhole Principle, there must be some j, k such that S_j and S_k have the same remainder.

Suppose without loss of generality that j < k. Then, 1000 must divide the difference

$$S_k-S_j=\sum_{i=j+1}^k a_i.$$

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

Suppose that some S_k is divisible by 1000. In that case, we are done.

Otherwise, there are only 999 possible remainders for the 1000 different S_k when divided by 1000. By the Pigeonhole Principle, there must be some j, k such that S_j and S_k have the same remainder.

Suppose without loss of generality that j < k. Then, 1000 must divide the difference

$$S_k - S_j = \sum_{i=j+1}^{\kappa} a_i.$$

This gives us the desired subset.

Let the 1000 integers be $a_1, a_2, ..., a_{1000}$. For k = 1, ..., 1000, let S_k denote the sum of the first *k* integers:

$$S_k = \sum_{i=1}^k a_i.$$

Suppose that some S_k is divisible by 1000. In that case, we are done.

Otherwise, there are only 999 possible remainders for the 1000 different S_k when divided by 1000. By the Pigeonhole Principle, there must be some j, k such that S_j and S_k have the same remainder.

Suppose without loss of generality that j < k. Then, 1000 must divide the difference

$$S_k - S_j = \sum_{i=j+1}^{\kappa} a_i.$$

This gives us the desired subset.

Proof techniques: Induction