COMP 761: Lecture 6 - Polynomials

David Rolnick

September 16, 2020

David Rolnick

COMP 761: Polynomials

Sep 16, 2020 1 / 19

イロト イヨト イヨト イ

Problem

What is the minimum possible value of $x^{100} + \frac{3}{x^{100}}$?

(Please don't post your ideas in the chat just yet, we'll discuss the problem soon in class.)

David Rolnick

• Reminder that the problem set is due on Friday

- Reminder that the problem set is due on Friday
- Post in the Slack if looking for collaborators

A D M A A A M M

- Reminder that the problem set is due on Friday
- Post in the Slack if looking for collaborators
- Office hours: Vincent on Thursday at 10:30 am, David on Friday at 10 am

David Rolnick

イロト イヨト イヨト イヨ

A *polynomial* in a variable *x* is an expression

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where a_0, a_1, \ldots, a_n are constants called *coefficients*.

A *polynomial* in a variable *x* is an expression

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where a_0, a_1, \ldots, a_n are constants called *coefficients*. The number *n* is called the *degree*.

A *polynomial* in a variable *x* is an expression

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where a_0, a_1, \ldots, a_n are constants called *coefficients*. The number *n* is called the *degree*.

Some examples:

A *polynomial* in a variable *x* is an expression

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where a_0, a_1, \ldots, a_n are constants called *coefficients*. The number *n* is called the *degree*.

Some examples:

• Degree 3 (*cubic*): e.g.
$$2x^3 - x + 1$$
.

A D M A A A M M

A *polynomial* in a variable x is an expression

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where a_0, a_1, \ldots, a_n are constants called *coefficients*. The number *n* is called the *degree*.

Some examples:

- Degree 3 (*cubic*): e.g. $2x^3 x + 1$.
- Degree 2 (quadratic): e.g. $\frac{1}{2}x^2 + 4x$.

A *polynomial* in a variable x is an expression

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where a_0, a_1, \ldots, a_n are constants called *coefficients*. The number *n* is called the *degree*.

Some examples:

- Degree 3 (*cubic*): e.g. $2x^3 x + 1$.
- Degree 2 (quadratic): e.g. $\frac{1}{2}x^2 + 4x$.
- Degree 1 (*linear*): e.g. 4*x* + 4.

A *polynomial* in a variable x is an expression

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where a_0, a_1, \ldots, a_n are constants called *coefficients*. The number *n* is called the *degree*.

Some examples:

- Degree 3 (*cubic*): e.g. $2x^3 x + 1$.
- Degree 2 (quadratic): e.g. $\frac{1}{2}x^2 + 4x$.
- Degree 1 (*linear*): e.g. 4*x* + 4.
- Degree 0 (constant): e.g. 17.

David Rolnick

ъ

・ロト ・ 日 ト ・ ヨ ト ・

• **Multiplication:** If the degree of polynomials *p*(*x*) and *q*(*x*) are *m* and *n*, respectively, then the degree of their product is *m* + *n*.

A D M A A A M M

- Multiplication: If the degree of polynomials p(x) and q(x) are m and n, respectively, then the degree of their product is m + n.
- Example:

$$(x+1)(2x^3-1) = 2x^4 + 2x^3 - x - 1,$$

with degree 1 + 3 = 4.

- Multiplication: If the degree of polynomials *p*(*x*) and *q*(*x*) are *m* and *n*, respectively, then the degree of their product is *m* + *n*.
- Example:

$$(x+1)(2x^3-1) = 2x^4 + 2x^3 - x - 1,$$

with degree 1 + 3 = 4.

• **Division:** If *p*(*x*) and *q*(*x*) have degree *m* and *n*, respectively, with *m* > *n*, then we can write

$$p(x) = q(x)r(x) + s(x),$$

for some polynomials r(x) and s(x), where the degree of s(x) is *less than n*.

- **Multiplication:** If the degree of polynomials *p*(*x*) and *q*(*x*) are *m* and *n*, respectively, then the degree of their product is *m* + *n*.
- Example:

$$(x+1)(2x^3-1) = 2x^4 + 2x^3 - x - 1,$$

with degree 1 + 3 = 4.

• **Division:** If *p*(*x*) and *q*(*x*) have degree *m* and *n*, respectively, with *m* > *n*, then we can write

$$p(x) = q(x)r(x) + s(x),$$

for some polynomials r(x) and s(x), where the degree of s(x) is *less than n*.

• Example: $p(x) = 2x^3 + 2x + 1$, $q(x) = x^2 + x$,

$$2x^3 + 2x + 1 = (x^2 + x)(2x - 2) + (4x + 1),$$

with 4x + 1 the remainder (with degree 1, which is strictly less than the degree of q(x)).

David Rolnick

_		_	
1)01/			nole
L JAV		- DU	
	•••		

◆□> ◆圖> ◆理> ◆理> 三連

• A *root* of a polynomial p(x) is a value of x such that p(x) = 0

- A root of a polynomial p(x) is a value of x such that p(x) = 0
- Linear polynomials are pretty easy to find the roots for, e.g. 2*x* + 4 has root *x* = −2.

- A root of a polynomial p(x) is a value of x such that p(x) = 0
- Linear polynomials are pretty easy to find the roots for, e.g. 2*x* + 4 has root *x* = −2.

Theorem

The polynomial p(x) is divisible by (x - r) if and only if r is a root.

• Why is this true?

- A root of a polynomial p(x) is a value of x such that p(x) = 0
- Linear polynomials are pretty easy to find the roots for, e.g. 2*x* + 4 has root *x* = −2.

Theorem

The polynomial p(x) is divisible by (x - r) if and only if r is a root.

- Why is this true?
- We can divide p(x) by x r:

$$p(x) = q(x)(x-r) + s(x),$$

where remainder s(x) has degree less than the degree of x - r.

- A root of a polynomial p(x) is a value of x such that p(x) = 0
- Linear polynomials are pretty easy to find the roots for, e.g. 2*x* + 4 has root *x* = −2.

Theorem

The polynomial p(x) is divisible by (x - r) if and only if r is a root.

- Why is this true?
- We can divide p(x) by x r:

$$p(x) = q(x)(x-r) + s(x),$$

where remainder s(x) has degree less than the degree of x - r.

• x - r is degree 1, so s(x) is degree 0 – that is, it's a constant s.

- A root of a polynomial p(x) is a value of x such that p(x) = 0
- Linear polynomials are pretty easy to find the roots for, e.g. 2*x* + 4 has root *x* = −2.

Theorem

The polynomial p(x) is divisible by (x - r) if and only if r is a root.

- Why is this true?
- We can divide p(x) by x r:

$$p(x) = q(x)(x-r) + s(x),$$

where remainder s(x) has degree less than the degree of x - r.

- x r is degree 1, so s(x) is degree 0 that is, it's a constant s.
- What happens if we set x = r?

$$p(r) = q(r)(r-r) + s = s,$$

so s = 0 if and only if p(r) = 0.

Theorem

A quadratic polynomial $ax^2 + bx + c$ has roots

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$$

4 A N

Theorem

A quadratic polynomial $ax^2 + bx + c$ has roots

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$$

• How would we prove this?

Theorem

A quadratic polynomial $ax^2 + bx + c$ has roots

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$$

- How would we prove this?
- Just need to check:

$$\left(x-\frac{-b+\sqrt{b^2-4ac}}{2a}\right)\left(x-\frac{-b-\sqrt{b^2-4ac}}{2a}\right)=ax^2+bx+c.$$

Theorem

A quadratic polynomial $ax^2 + bx + c$ has roots

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$$

- How would we prove this?
- Just need to check:

$$\left(x-\frac{-b+\sqrt{b^2-4ac}}{2a}\right)\left(x-\frac{-b-\sqrt{b^2-4ac}}{2a}\right)=ax^2+bx+c.$$

• When are the two roots equal?

$$b^2 - 4ac = 0.$$

Theorem

A quadratic polynomial $ax^2 + bx + c$ has roots

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.$$

- How would we prove this?
- Just need to check:

$$\left(x-\frac{-b+\sqrt{b^2-4ac}}{2a}\right)\left(x-\frac{-b-\sqrt{b^2-4ac}}{2a}\right)=ax^2+bx+c.$$

When are the two roots equal?

$$b^2-4ac=0.$$

• Example: $(x-3)^2 = x^2 - 6x + 9$,

$$b^2 - 4ac = 36 - 36 = 0.$$

David Rolnick

• Let's define the *imaginary unit* $i = \sqrt{-1}$.

A D > A B > A B > A

- Let's define the *imaginary unit* $i = \sqrt{-1}$.
- Then, a *complex number* is any number of the form *a* + *bi*, where *a*, *b* are real numbers.

A D M A A A M M

- Let's define the *imaginary unit* $i = \sqrt{-1}$.
- Then, a *complex number* is any number of the form *a* + *bi*, where *a*, *b* are real numbers.
- To work with complex numbers, treat *i* like *x*, but with $i^2 = -1$.

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

 $(a+bi)(c+di)=ac+bdi^2+(ad+bc)i$
 $=(ac-bd)+(ad+bc)i.$

- Let's define the *imaginary unit* $i = \sqrt{-1}$.
- Then, a *complex number* is any number of the form *a* + *bi*, where *a*, *b* are real numbers.
- To work with complex numbers, treat *i* like *x*, but with $i^2 = -1$.

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

 $(a+bi)(c+di)=ac+bdi^2+(ad+bc)i$
 $=(ac-bd)+(ad+bc)i.$

What is i³?
Complex numbers

- Let's define the *imaginary unit* $i = \sqrt{-1}$.
- Then, a *complex number* is any number of the form *a* + *bi*, where *a*, *b* are real numbers.
- To work with complex numbers, treat *i* like *x*, but with $i^2 = -1$.

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

 $(a+bi)(c+di)=ac+bdi^2+(ad+bc)i$
 $=(ac-bd)+(ad+bc)i.$

- What is i³?
- $i^3 = i^2 \cdot i = -1 \cdot i = -i$.

Complex numbers

- Let's define the *imaginary unit* $i = \sqrt{-1}$.
- Then, a *complex number* is any number of the form *a* + *bi*, where *a*, *b* are real numbers.
- To work with complex numbers, treat *i* like *x*, but with $i^2 = -1$.

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

 $(a+bi)(c+di)=ac+bdi^2+(ad+bc)i$
 $=(ac-bd)+(ad+bc)i.$

What is i³?

•
$$i^3 = i^2 \cdot i = -1 \cdot i = -i$$
.

• And
$$i^4 = (i^2)^2 = (-1)^2 = 1$$
.

David Rolnick

・ロト ・日下 ・ ヨト ・

 We often consider complex numbers *a* + *bi* in the *complex plane*. That just means taking them as points in 2D space, with *x*-coordinate *a* and *y*-coordinate *b*.

 We often consider complex numbers *a* + *bi* in the *complex plane*. That just means taking them as points in 2D space, with *x*-coordinate *a* and *y*-coordinate *b*.

• We can use polar coordinates (radius *r* and angle θ):

$$a + bi = r \cos \theta + ir \sin \theta$$

 We often consider complex numbers *a* + *bi* in the *complex plane*. That just means taking them as points in 2D space, with *x*-coordinate *a* and *y*-coordinate *b*.

• We can use polar coordinates (radius r and angle θ):

$$a + bi = r \cos \theta + ir \sin \theta$$

• An awesome thing about multiplying complex numbers:

$$(r_1 \cos \theta_1 + ir_1 \sin \theta_1) (r_2 \cos \theta_2 + ir_2 \sin \theta_2) = (r_1 r_2 \cos(\theta_1 + \theta_2) + ir_1 r_2 \sin(\theta_1 + \theta_2))$$

- We often consider complex numbers *a* + *bi* in the *complex plane*. That just means taking them as points in 2D space, with *x*-coordinate *a* and *y*-coordinate *b*.
- We can use polar coordinates (radius *r* and angle θ):

 $a + bi = r \cos \theta + ir \sin \theta$

• An awesome thing about multiplying complex numbers:

$$(r_1 \cos \theta_1 + ir_1 \sin \theta_1) (r_2 \cos \theta_2 + ir_2 \sin \theta_2) = (r_1 r_2 \cos(\theta_1 + \theta_2) + ir_1 r_2 \sin(\theta_1 + \theta_2))$$

• Can prove this using trigonometric formulas, but the *real reason* will have to wait a few lectures until Taylor series.

イロン イロン イヨン イヨン 二日

What is 4*i* in trigonometric form?

< E

What is 4*i* in trigonometric form?

Geometric way of thinking: In *xy*-coordinates, this is (0,4), so the angle is θ = 90° and the radius is r = 4.

What is 4*i* in trigonometric form?

- Geometric way of thinking: In *xy*-coordinates, this is (0, 4), so the angle is θ = 90° and the radius is r = 4.
- Trigonometric way of thinking:

$$4i = 4(\cos(90^\circ) + i\sin(90^\circ)).$$

A D M A A A M M

What is 4*i* in trigonometric form?

- Geometric way of thinking: In *xy*-coordinates, this is (0, 4), so the angle is θ = 90° and the radius is r = 4.
- Trigonometric way of thinking:

$$4i = 4(\cos(90^\circ) + i\sin(90^\circ)).$$

So what is $(4i)^2$ in trigonometric form?

What is 4*i* in trigonometric form?

- Geometric way of thinking: In *xy*-coordinates, this is (0, 4), so the angle is θ = 90° and the radius is r = 4.
- Trigonometric way of thinking:

$$4i = 4(\cos(90^\circ) + i\sin(90^\circ)).$$

So what is $(4i)^2$ in trigonometric form?

• Radii multiply and angles add, so we must have $\theta = 90^{\circ} + 90^{\circ} = 180^{\circ}$ and $r = 4 \cdot 4 = 16$.

What is 4*i* in trigonometric form?

- Geometric way of thinking: In *xy*-coordinates, this is (0, 4), so the angle is θ = 90° and the radius is r = 4.
- Trigonometric way of thinking:

$$4i = 4(\cos(90^\circ) + i\sin(90^\circ)).$$

So what is $(4i)^2$ in trigonometric form?

- Radii multiply and angles add, so we must have $\theta = 90^{\circ} + 90^{\circ} = 180^{\circ}$ and $r = 4 \cdot 4 = 16$.
- This makes sense since we know $(4i)^2 = 16i^2 = -16$.

What is a square root of 4*i*?

イロト イヨト イヨト イヨト

What is a square root of 4*i*?

• Let's write 4*i* in trigonometric form:

```
4i = 4(\cos(90^\circ) + i\sin(90^\circ)),
```

so the radius is 4 and the angle is 90°

What is a square root of 4*i*?

• Let's write 4*i* in trigonometric form:

```
4i = 4(\cos(90^{\circ}) + i\sin(90^{\circ})),
```

so the radius is 4 and the angle is 90°

• We want some $x = r(\cos(\theta) + i\sin(\theta))$ where

 $4(\cos(90^{\circ}) + i\sin(90^{\circ})) = x^2 = r^2(\cos(2\theta) + i\sin(2\theta)).$

What is a square root of 4*i*?

• Let's write 4*i* in trigonometric form:

```
4i = 4(\cos(90^{\circ}) + i\sin(90^{\circ})),
```

so the radius is 4 and the angle is 90°

• We want some $x = r(\cos(\theta) + i\sin(\theta))$ where

 $4(\cos(90^{\circ}) + i\sin(90^{\circ})) = x^2 = r^2(\cos(2\theta) + i\sin(2\theta)).$

• That means $r^2 = 4$ so r = 2.

What is a square root of 4*i*?

• Let's write 4*i* in trigonometric form:

 $4i = 4(\cos(90^\circ) + i\sin(90^\circ)),$

so the radius is 4 and the angle is 90°

• We want some $x = r(\cos(\theta) + i\sin(\theta))$ where

 $4(\cos(90^{\circ}) + i\sin(90^{\circ})) = x^2 = r^2(\cos(2\theta) + i\sin(2\theta)).$

- That means $r^2 = 4$ so r = 2.
- We can take $\theta = 45^{\circ}$, so

$$x = 2(\cos(45^\circ) + i\sin(45^\circ)) = \sqrt{2} + \sqrt{2}i.$$

David Rolnick

What is a square root of 4*i*?

• Let's write 4*i* in trigonometric form:

 $4i = 4(\cos(90^\circ) + i\sin(90^\circ)),$

so the radius is 4 and the angle is 90°

• We want some $x = r(\cos(\theta) + i\sin(\theta))$ where

 $4(\cos(90^{\circ}) + i\sin(90^{\circ})) = x^2 = r^2(\cos(2\theta) + i\sin(2\theta)).$

- That means $r^2 = 4$ so r = 2.
- We can take $\theta = 45^{\circ}$, so

$$x = 2(\cos(45^\circ) + i\sin(45^\circ)) = \sqrt{2} + \sqrt{2}i.$$

• Another option: $\theta = (90^{\circ} + 360^{\circ})/2 = 225^{\circ}$, so

$$x = 2(\cos(225^\circ) + i\sin(225^\circ)) = -\sqrt{2} - \sqrt{2}i.$$

David Rolnick

COMP 761: Polynomials

≣ ▶ ৰ ≣ ▶ ≣ ∕) ৭ ৫ Sep 16, 2020 12 / 19

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Let's go back to the quadratic formula:

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

< 17 ▶

• Let's go back to the quadratic formula:

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

• What if the stuff in the square root is negative?

• Let's go back to the quadratic formula:

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

• What if the stuff in the square root is negative?

$$x^{2} + 2x + 5 = 0$$

$$x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 5}}{2}$$

$$= -1 \pm \frac{\sqrt{-16}}{2} = -1 \pm \frac{4i}{2} = -1 \pm 2i$$

• Let's go back to the quadratic formula:

$$ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

What if the stuff in the square root is negative?

$$x^{2} + 2x + 5 = 0$$

$$x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 5}}{2}$$

$$= -1 \pm \frac{\sqrt{-16}}{2} = -1 \pm \frac{4i}{2} = -1 \pm 2i$$

 Complex roots of quadratics always come in *conjugate pairs*: if there is one root d + ei, there is another d - ei.

Theorem

Every polynomial with real coefficients can be factored into quadratic and linear polynomials with real coefficients.

Theorem

Every polynomial with real coefficients can be factored into quadratic and linear polynomials with real coefficients.

• Example: $x^4 - x^3 - x^2 - x - 2 = (x^2 + 1)(x - 2)(x + 1)$.

Theorem

Every polynomial with real coefficients can be factored into quadratic and linear polynomials with real coefficients.

- Example: $x^4 x^3 x^2 x 2 = (x^2 + 1)(x 2)(x + 1)$.
- Proof beyond the scope of this course look up the Fundamental Theorem of Algebra if you want to find more.

Theorem

Every polynomial with real coefficients can be factored into quadratic and linear polynomials with real coefficients.

- Example: $x^4 x^3 x^2 x 2 = (x^2 + 1)(x 2)(x + 1)$.
- Proof beyond the scope of this course look up the Fundamental Theorem of Algebra if you want to find more.

Corollary

Every polynomial with real coefficients and degree n has n complex roots (possibly including duplicates). That is, it can be factored completely into linear factors with complex number coefficients:

$$a(x-r_1)(x-r_2)\cdots(x-r_n),$$

for a real and r_1, \ldots, r_n complex.

Theorem

Every polynomial with real coefficients can be factored into quadratic and linear polynomials with real coefficients.

- Example: $x^4 x^3 x^2 x 2 = (x^2 + 1)(x 2)(x + 1)$.
- Proof beyond the scope of this course look up the Fundamental Theorem of Algebra if you want to find more.

Corollary

Every polynomial with real coefficients and degree n has n complex roots (possibly including duplicates). That is, it can be factored completely into linear factors with complex number coefficients:

$$a(x-r_1)(x-r_2)\cdots(x-r_n),$$

for a real and r_1, \ldots, r_n complex. Also, r_k come in conjugate pairs – that is, if there is one that equals a + bi with $b \neq 0$, then another is a - bi.

David Rolnick

2

・ロト ・ 日 ト ・ 日 ト

• How do the coefficients of a polynomial depend on the roots?

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $a_n (x - r_1)(x - r_2) \cdots (x - r_n)$

• How do the coefficients of a polynomial depend on the roots?

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $a_n (x - r_1)(x - r_2) \cdots (x - r_n)$
= $a_n x^n - a_n (r_1 + r_2 + \dots + r_n) x^{n-1}$
+ $a_n (r_1 r_2 + r_1 r_3 + \dots + r_{n-1} r_n) x^{n-2} + \dots$
+ $a_n (-1)^n (r_1 r_2 \cdots r_n)$

• How do the coefficients of a polynomial depend on the roots?

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $a_n (x - r_1)(x - r_2) \cdots (x - r_n)$
= $a_n x^n - a_n (r_1 + r_2 + \dots + r_n) x^{n-1}$
+ $a_n (r_1 r_2 + r_1 r_3 + \dots + r_{n-1} r_n) x^{n-2} + \dots$
+ $a_n (-1)^n (r_1 r_2 \cdots r_n)$

• Therefore:

$$a_{n-1}/a_n = -(r_1 + r_2 + \dots + r_n)$$

$$a_{n-2}/a_n = r_1r_2 + r_1r_3 + \dots + r_{n-1}r_n$$

$$a_{n-3}/a_n = -(r_1r_2r_3 + r_1r_2r_4 + \dots + r_{n-2}r_{n-1}r_n)$$

$$\vdots$$

$$a_0/a_n = (-1)^n r_1r_2 \cdots r_n$$

A D M A A A M M

Suppose the roots of $x^3 - 2x^2 + 1$ are r_1, r_2, r_3 . Find $r_1 + r_2 + r_3$ and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

Suppose the roots of $x^3 - 2x^2 + 1$ are r_1, r_2, r_3 . Find $r_1 + r_2 + r_3$ and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

• From Vieta's formulas, we know that $r_1 + r_2 + r_3$ is the negative of coefficient on x^2 , so

$$r_1 + r_2 + r_3 = 2.$$

Suppose the roots of $x^3 - 2x^2 + 1$ are r_1, r_2, r_3 . Find $r_1 + r_2 + r_3$ and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

• From Vieta's formulas, we know that $r_1 + r_2 + r_3$ is the negative of coefficient on x^2 , so

$$r_1 + r_2 + r_3 = 2.$$

• The other one is tricky, how can we do it?
Suppose the roots of $x^3 - 2x^2 + 1$ are r_1, r_2, r_3 . Find $r_1 + r_2 + r_3$ and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

From Vieta's formulas, we know that r₁ + r₂ + r₃ is the negative of coefficient on x², so

$$r_1 + r_2 + r_3 = 2.$$

- The other one is tricky, how can we do it?
- We can write it using two other things we know!

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{r_1r_2 + r_1r_3 + r_2r_3}{r_1r_2r_3}$$

Suppose the roots of $x^3 - 2x^2 + 1$ are r_1, r_2, r_3 . Find $r_1 + r_2 + r_3$ and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

• From Vieta's formulas, we know that $r_1 + r_2 + r_3$ is the negative of coefficient on x^2 , so

$$r_1 + r_2 + r_3 = 2.$$

- The other one is tricky, how can we do it?
- We can write it using two other things we know!

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{r_1r_2 + r_1r_3 + r_2r_3}{r_1r_2r_3}$$

• $r_1r_2r_3$ is equal to $(-1)^3$ times the constant coefficient, so -1.

Suppose the roots of $x^3 - 2x^2 + 1$ are r_1, r_2, r_3 . Find $r_1 + r_2 + r_3$ and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

From Vieta's formulas, we know that r₁ + r₂ + r₃ is the negative of coefficient on x², so

$$r_1 + r_2 + r_3 = 2.$$

- The other one is tricky, how can we do it?
- We can write it using two other things we know!

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{r_1r_2 + r_1r_3 + r_2r_3}{r_1r_2r_3}$$

• $r_1 r_2 r_3$ is equal to $(-1)^3$ times the constant coefficient, so -1.

• $r_1r_2 + r_1r_3 + r_2r_3$ is the coefficient on *x*, which is 0.

Suppose the roots of $x^3 - 2x^2 + 1$ are r_1, r_2, r_3 . Find $r_1 + r_2 + r_3$ and $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$.

• From Vieta's formulas, we know that $r_1 + r_2 + r_3$ is the negative of coefficient on x^2 , so

$$r_1 + r_2 + r_3 = 2.$$

- The other one is tricky, how can we do it?
- We can write it using two other things we know!

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{r_1r_2 + r_1r_3 + r_2r_3}{r_1r_2r_3}$$

• $r_1 r_2 r_3$ is equal to $(-1)^3$ times the constant coefficient, so -1.

• $r_1r_2 + r_1r_3 + r_2r_3$ is the coefficient on *x*, which is 0.

So

$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{0}{-1} = 0.$$

These can often be useful:

$$x^{2} - y^{2} = (x - y)(x + y)$$

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + ... + x + 1)$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

ъ

Image: A match a ma

These can often be useful:

$$x^{2} - y^{2} = (x - y)(x + y)$$

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

So what can you do with $x^6 - 1$?

These can often be useful:

$$x^{2} - y^{2} = (x - y)(x + y)$$

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

So what can you do with $x^6 - 1$?

$$x^6 - 1 = (x^3 - 1)(x^3 + 1)$$

These can often be useful:

$$x^{2} - y^{2} = (x - y)(x + y)$$

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + ... + x + 1)$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

So what can you do with $x^6 - 1$?

$$\begin{aligned} x^6 - 1 &= (x^3 - 1)(x^3 + 1) \\ &= (x - 1)(x^2 + x + 1)(x + 1)(x^2 - x + 1). \end{aligned}$$

What are the *n* complex roots of $x^n - 1$? (called *roots of unity*)

-

Image: A math a math

What are the *n* complex roots of $x^n - 1$? (called *roots of unity*)

• Let's look at trigonometric form: $x = r(\cos \theta + i \sin \theta)$.

A D M A A A M M

What are the *n* complex roots of $x^n - 1$? (called *roots of unity*)

- Let's look at trigonometric form: $x = r(\cos \theta + i \sin \theta)$.
- We want $x^n 1 = 0$, so:

$$1 = x^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

A D M A A A M M

What are the *n* complex roots of $x^n - 1$? (called *roots of unity*)

- Let's look at trigonometric form: $x = r(\cos \theta + i \sin \theta)$.
- We want $x^n 1 = 0$, so:

$$1 = x^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

• That means r = 1 and $n\theta$ should be some multiple of 360°.

What are the *n* complex roots of $x^n - 1$? (called *roots of unity*)

- Let's look at trigonometric form: $x = r(\cos \theta + i \sin \theta)$.
- We want $x^n 1 = 0$, so:

$$1 = x^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

• That means r = 1 and $n\theta$ should be some multiple of 360°.

• If n = 2, then $\theta = 0^{\circ}$ or 180° , and so $x = \pm 1$.

What are the *n* complex roots of $x^n - 1$? (called *roots of unity*)

- Let's look at trigonometric form: $x = r(\cos \theta + i \sin \theta)$.
- We want $x^n 1 = 0$, so:

$$1 = x^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

• That means r = 1 and $n\theta$ should be some multiple of 360°.

- If n = 2, then $\theta = 0^{\circ}$ or 180° , and so $x = \pm 1$.
- If n = 4, then $\theta = 0^{\circ}, 90^{\circ}, 180^{\circ}$, or 270°, and so x = 1, i, -1, -i.

What are the roots of $x^4 + x^3 + x^2 + x + 1$?

What are the roots of $x^4 + x^3 + x^2 + x + 1$?

We can use that factorization from earlier:

$$x^{5}-1 = (x-1)(x^{4}+x^{3}+x^{2}+x+1).$$

э

• • • • • • • • • • • • •

What are the roots of $x^4 + x^3 + x^2 + x + 1$?

• We can use that factorization from earlier:

$$x^{5}-1 = (x-1)(x^{4}+x^{3}+x^{2}+x+1).$$

• How does this help?

A D M A A A M M

-

What are the roots of $x^4 + x^3 + x^2 + x + 1$?

• We can use that factorization from earlier:

$$x^{5}-1 = (x-1)(x^{4}+x^{3}+x^{2}+x+1).$$

- How does this help?
- The roots of $x^4 + x^3 + x^2 + x + 1$ must be the same as the roots of $x^5 1$, leaving out x = 1.

What are the roots of $x^4 + x^3 + x^2 + x + 1$?

• We can use that factorization from earlier:

$$x^{5}-1 = (x-1)(x^{4}+x^{3}+x^{2}+x+1).$$

- How does this help?
- The roots of $x^4 + x^3 + x^2 + x + 1$ must be the same as the roots of $x^5 1$, leaving out x = 1.
- The 5th roots of unity are:

$$\cos \theta + i \sin \theta$$
, for $\theta = 0^{\circ}, 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$.

since $72^{\circ} = 360^{\circ}/5$.

• So answer is:

$$\cos \theta + i \sin \theta$$
, for $\theta = 72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$.

Number theory

• • • • • • • • • • •