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Problem
What is the variance of the random variable that takes all values
between a and b with equal probability? (uniform distribution)

(Please don’t post your ideas in the chat just yet, we’ll discuss the
problem soon in class.)
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Course Announcements

Office hours today right after class
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Conditional prob and independence

Good point raised in the Slack: If p(A | B) = p(A), are A and B
independent?
Yes!

p(A | B)p(B) = p(A ∩ B),

so if p(A | B) = p(A) then p(A)p(B) = p(A ∩ B).
Reverse is true too: if A and B independent, then p(A | B) = p(A)
and p(B | A) = p(B).
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Intuition for entropy

How much information is needed to represent events from a
probability distribution?
If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10,11.
So that requires 2 bits of information.
If you had 8 events with probability 1/8, it would be 3 bits.
In general, for probability p, would be log2 1/p = − log2 p.
If 1 event has probability 1/2 and there are 2 of probability 1/4,
then most efficient to use 0,10,11 (essentially, merging 00 & 01).
Total expected number of bits: (1/2) · 1 + (1/4) · 2 + (1/4) · 2.
Another example, if probabilities 1/2,1/4,1/8,1/8:

(1/2) · 1 + (1/4) · 2 + (1/8) · 3 + (1/8) · 3.

Generalization:∑
x

p(X = x) log2(1/p(X = x)) = −
∑

x

p(X = x) log2(p(X = x)).
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Entropy

The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative
constant):

H(p) = −
∑

x

p(x) log(p(x)).

(Using shorthand p(x) for p(X = x).)
Entropy is always nonnegative - why?
We have p(x) ≥ 0 and log(p(x)) < 0, so every term in the sum is
negative.
When is H(p) = 0?
If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.
Continuous set of events:

H(p) = −
∫

p(x) log(p(x))dx .

David Rolnick COMP 761: Probability III Oct 19, 2020 6 / 23



Entropy

The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative
constant):

H(p) = −
∑

x

p(x) log(p(x)).

(Using shorthand p(x) for p(X = x).)
Entropy is always nonnegative - why?
We have p(x) ≥ 0 and log(p(x)) < 0, so every term in the sum is
negative.
When is H(p) = 0?
If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.
Continuous set of events:

H(p) = −
∫

p(x) log(p(x))dx .

David Rolnick COMP 761: Probability III Oct 19, 2020 6 / 23



Entropy

The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative
constant):

H(p) = −
∑

x

p(x) log(p(x)).

(Using shorthand p(x) for p(X = x).)
Entropy is always nonnegative - why?

We have p(x) ≥ 0 and log(p(x)) < 0, so every term in the sum is
negative.
When is H(p) = 0?
If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.
Continuous set of events:

H(p) = −
∫

p(x) log(p(x))dx .

David Rolnick COMP 761: Probability III Oct 19, 2020 6 / 23



Entropy

The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative
constant):

H(p) = −
∑

x

p(x) log(p(x)).

(Using shorthand p(x) for p(X = x).)
Entropy is always nonnegative - why?
We have p(x) ≥ 0 and log(p(x)) < 0, so every term in the sum is
negative.

When is H(p) = 0?
If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.
Continuous set of events:

H(p) = −
∫

p(x) log(p(x))dx .

David Rolnick COMP 761: Probability III Oct 19, 2020 6 / 23



Entropy

The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative
constant):

H(p) = −
∑

x

p(x) log(p(x)).

(Using shorthand p(x) for p(X = x).)
Entropy is always nonnegative - why?
We have p(x) ≥ 0 and log(p(x)) < 0, so every term in the sum is
negative.
When is H(p) = 0?

If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.
Continuous set of events:

H(p) = −
∫

p(x) log(p(x))dx .

David Rolnick COMP 761: Probability III Oct 19, 2020 6 / 23



Entropy

The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative
constant):

H(p) = −
∑

x

p(x) log(p(x)).

(Using shorthand p(x) for p(X = x).)
Entropy is always nonnegative - why?
We have p(x) ≥ 0 and log(p(x)) < 0, so every term in the sum is
negative.
When is H(p) = 0?
If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.

Continuous set of events:

H(p) = −
∫

p(x) log(p(x))dx .

David Rolnick COMP 761: Probability III Oct 19, 2020 6 / 23



Entropy

The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative
constant):

H(p) = −
∑

x

p(x) log(p(x)).

(Using shorthand p(x) for p(X = x).)
Entropy is always nonnegative - why?
We have p(x) ≥ 0 and log(p(x)) < 0, so every term in the sum is
negative.
When is H(p) = 0?
If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.
Continuous set of events:

H(p) = −
∫

p(x) log(p(x))dx .

David Rolnick COMP 761: Probability III Oct 19, 2020 6 / 23



Entropy
If there are n different values for X , what is the maximum possible
value for the entropy?

Let p1, . . . ,pn be the probabilities of the different values.

H = −
n∑

k=1

pk log(pk ).

How do we get an upper bound for this?
How could we use Jensen’s inequality? What function?
Let’s try z log z. Is it concave or convex?
We have

d
dz

(z log z) = z
(

1
z

)
+ 1 (log z) = 1 + log z

d2

dz2 (z log z) =
d
dz

(1 + log z) =
1
z
.

Since z > 0 we have that z log z is convex.
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Entropy
If there are n different events, what is the maximum possible value for
the entropy?

Let p1, . . . ,pn be the probabilities of the different events.

H = −
n∑

k=1

pk log(pk ).

We have that z log z is convex.

Then:∑n
k=1 pk log(pk )

n
≥
(

p1 + · · ·+ pn

n

)
log
(

p1 + · · ·+ pn

n

)

=
1
n

log
(

1
n

)
.

Multiplying by −n, get H ≤ − log(1/n) = log(n).
Is this value achievable? If so, when?
Yes! Equality in Jensen’s Inequality when all pk equal.
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Conditional entropy

What happens if we know that X = x but don’t know Y = y?
How much additional information is needed to get Y ?
Need − log(p(Y = y | X = x)).
Finding the expected value of that:

H(Y | X ) =
∑
x ,y

p(X = x ,Y = y) (− log(p(Y = y | X = x)))

= −
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)

)
.

This is the called the conditional entropy.
Compare to the standard entropy:

H(X ) = −
∑

x

p(X = x) log(p(X = x)).

As with H(X ), can show H(Y | X ) ≥ 0.
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Mutual information

We define the mutual information:

I(X ;Y ) = H(Y )− H(Y | X ).

Let’s expand it:

I(X ;Y ) = −
∑

y

p(Y = y) log(p(Y = y))

+
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)

)

= −
∑
x ,y

p(X = x ,Y = y) log(p(Y = y))

+
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)

)
=
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)p(Y = y)

)
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Mutual information

I(X ;Y ) = H(Y )− H(Y | X )

=
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)p(Y = y)

)
.

What can we learn from this?
If we switch X and Y , it’s the same:

I(X ;Y ) = I(Y ;X ) = H(X )− H(X | Y ).

If X and Y are independent, then

log
(

p(X = x ,Y = y)
p(X = x)p(Y = y)

)
= log 1 = 0.

Can think of I(X ;Y ) as being the information gained about Y by
knowing X , or vice versa.
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Mutual information

I(X ;Y ) = H(Y )− H(Y | X )

=
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)p(Y = y)

)
.

Intuitively should be true that I(X ;Y ) ≥ 0.
Can show by Jensen’s inequality.

Unfortunately it is not true that log
(

p(X=x ,Y=y)
p(X=x)p(Y=y)

)
is always

nonnegative.

David Rolnick COMP 761: Probability III Oct 19, 2020 12 / 23



Mutual information

I(X ;Y ) = H(Y )− H(Y | X )

=
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)p(Y = y)

)
.

Intuitively should be true that I(X ;Y ) ≥ 0.

Can show by Jensen’s inequality.

Unfortunately it is not true that log
(

p(X=x ,Y=y)
p(X=x)p(Y=y)

)
is always

nonnegative.

David Rolnick COMP 761: Probability III Oct 19, 2020 12 / 23



Mutual information

I(X ;Y ) = H(Y )− H(Y | X )

=
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)p(Y = y)

)
.

Intuitively should be true that I(X ;Y ) ≥ 0.
Can show by Jensen’s inequality.

Unfortunately it is not true that log
(

p(X=x ,Y=y)
p(X=x)p(Y=y)

)
is always

nonnegative.

David Rolnick COMP 761: Probability III Oct 19, 2020 12 / 23



Mutual information

I(X ;Y ) = H(Y )− H(Y | X )

=
∑
x ,y

p(X = x ,Y = y) log
(

p(X = x ,Y = y)
p(X = x)p(Y = y)

)
.

Intuitively should be true that I(X ;Y ) ≥ 0.
Can show by Jensen’s inequality.

Unfortunately it is not true that log
(

p(X=x ,Y=y)
p(X=x)p(Y=y)

)
is always

nonnegative.

David Rolnick COMP 761: Probability III Oct 19, 2020 12 / 23



Continuous probability distributions

Suppose we have a continuous-valued variable X .
The probability of X = x is always 0 – for example, essentially
impossible that a random person is exactly 2.00000003 meters
high.
In that case, we have a probability density function p(x) ≥ 0.
p(x) is not the probability of X = x , because that would be 0.
Instead, can talk about the probability that X is between a and b:∫ b

a
p(x)dx .

And we have ∫ ∞
−∞

p(x)dx = 1.

Note that p(x) can be bigger than 1 (though must be nonnegative
or there would be an interval [a,b] with negative probability).
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Uniform distribution

The uniform distribution on [a,b] is the distribution where
a ≤ x ≤ b and p(x) is equal everywhere.
What is the right constant value C of p(x)?
We want:

1 =

∫ ∞
−∞

p(x)dx =

∫ b

a
p(x)dx

=

∫ b

a
C dx = (Cx)x=b − (Cx)x=a = C(b − a).

So p(x) = C = 1/(b − a).
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Uniform distribution

p(x) = 1/(b − a).
What is the mean of p(x)?
Pretty clear that it is (a + b)/2, but can also calculate:

E[X ] =

∫ b

a
xp(x)dx =

∫ b

a
x/(b − a)dx

=

(
x2

2(b − a)

)
x=b
−
(

x2

2(b − a)

)
x=a

=
b2 − a2

2(b − a)
=

b + a
2
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Univariate Gaussian

The Gaussian or normal distribution N(µ, σ2) is given by:

p(x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2

.

Can calculate (with some thorny integrals) that indeed∫∞
−∞ p(x)dx = 1

And that the Gaussian has mean µ and variance σ2.
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Cool fact I: Adding independent Gaussian random
variables

Suppose X and Y are independent random variables.
We know E[X + Y ] = E[X ] + E[Y ] and
Var[X ,Y ] = Var[X ] + Var[Y ].
If X ,Y are Gaussian, it’s better than that - their sum is Gaussian
too.
If X is distributed by N(µ1, σ

2
1) and Y is independently distributed

by N(µ2, σ
2
2), then X + Y is distributed by N(µ1 + µ2, σ

2
1 + σ2

2).
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Cool fact II: Maximum entropy distribution

N(µ, σ2) is the distribution with maximum entropy out of all
distributions with mean µ and variance σ2.
(Can be proved with Lagrange multipliers.)
What is the maximum entropy distribution if you just assume it has
mean µ?
Suppose p(x) = 1/n for n different values with mean µ.
Then, entropy is log(n).
By taking n→∞, we can make the entropy arbitrarily big.
So there isn’t a maximum if don’t constrain variance! Entropy can
go to infinity.
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Cool fact III: Limit of binomial distribution

The graph of
(n

k

)
for k = 0,1, . . . ,n approaches the Gaussian.

Therefore, number of heads for n coin flips is approx Gaussian:

More generally, the Central Limit Theorem says the sum of
X1, . . . ,Xn drawn independently from the same distribution
approaches a Gaussian as n→∞ regardless of the distribution.
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Random matrices

Random things can be surprisingly predictable.
Given a large number n of fair coin flips, the expected number of
heads is n/2.
And we would be shocked to get n/4.
Same thing for big random matrices.
Random matrix is an entire field :)
Useful in everything from quantum to machine learning.
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Example: Wigner’s semicircle law

We know the eigenvalues of a real symmetric matrix A ∈ Rn×n are
real.
What are the eigenvalues if n goes to infinity, and A is random?
Let’s assume each entry taken independently of the others from a
Gaussian.
Then if we do a histogram of n eigenvalues, it looks like a
semicircle!
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Next time!

Linear Programs I
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