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Problem

What is the variance of the random variable that takes all values
between a and b with equal probability? (uniform distribution)

(Please don’t post your ideas in the chat just yet, we’ll discuss the
problem soon in class.)
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Course Announcements

@ Office hours today right after class
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Conditional prob and independence

@ Good point raised in the Slack: If p(A | B) = p(A), are Aand B
independent?
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Conditional prob and independence

@ Good point raised in the Slack: If p(A | B) = p(A), are Aand B
independent?

@ Yes!
p(A| B)p(B) = p(An B),
so if p(A| B) = p(A) then p(A)p(B) = p(AN B).
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Conditional prob and independence

@ Good point raised in the Slack: If p(A | B) = p(A), are Aand B
independent?

@ Yes!
p(A| B)p(B) = p(AN B),
so if p(A| B) = p(A) then p(A)p(B) = p(AN B).
@ Reverse is true too: if A and B independent, then p(A | B) = p(A)
and p(B | A) = p(B).
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.

@ So that requires 2 bits of information.
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.

@ So that requires 2 bits of information.

@ If you had 8 events with probability 1/8, it would be 3 bits.
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.

@ So that requires 2 bits of information.

@ If you had 8 events with probability 1/8, it would be 3 bits.

@ In general, for probability p, would be log, 1/p = —log, p.
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.

@ So that requires 2 bits of information.

@ If you had 8 events with probability 1/8, it would be 3 bits.

@ In general, for probability p, would be log, 1/p = —log, p.

@ If 1 event has probability 1/2 and there are 2 of probability 1/4,
then most efficient to use 0,10, 11 (essentially, merging 00 & 01).
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.

@ So that requires 2 bits of information.

@ If you had 8 events with probability 1/8, it would be 3 bits.

@ In general, for probability p, would be log, 1/p = —log, p.

@ If 1 event has probability 1/2 and there are 2 of probability 1/4,
then most efficient to use 0,10, 11 (essentially, merging 00 & 01).

@ Total expected number of bits: (1/2) -1+ (1/4)-2+(1/4) - 2.
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.

@ So that requires 2 bits of information.

@ If you had 8 events with probability 1/8, it would be 3 bits.

@ In general, for probability p, would be log, 1/p = —log, p.

@ If 1 event has probability 1/2 and there are 2 of probability 1/4,
then most efficient to use 0,10, 11 (essentially, merging 00 & 01).

@ Total expected number of bits: (1/2) -1+ (1/4)-2+(1/4) - 2.

@ Another example, if probabilities 1/2,1/4,1/8,1/8:

(1/2)-1+(1/4)-2+(1/8)-3+(1/8)-3.
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Intuition for entropy

@ How much information is needed to represent events from a
probability distribution?

@ If you have 4 events each with probability 1/4, a compressed way
to represent them is 00,01,10, 11.

@ So that requires 2 bits of information.

@ If you had 8 events with probability 1/8, it would be 3 bits.

@ In general, for probability p, would be log, 1/p = —log, p.

@ If 1 event has probability 1/2 and there are 2 of probability 1/4,
then most efficient to use 0,10, 11 (essentially, merging 00 & 01).

@ Total expected number of bits: (1/2) -1+ (1/4)-2+(1/4) -2

@ Another example, if probabilities 1/2,1/4,1/8,1/8:

(1/2)-1+(1/4)-2+(1/8)-3+(1/8)-3

@ Generalization:

Zp = x)log,(1/p(X Zp = x)logy(p(X = x)).
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Entropy

@ The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative

constant):
Zp ) log(p(x
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Entropy

@ The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative

constant):
Zp ) log(p

@ (Using shorthand p(x) for p(X = x).)
@ Entropy is always nonnegative - why?
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Entropy

@ The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative

constant):
Zp ) log(p

@ (Using shorthand p(x) for p(X = X).)

@ Entropy is always nonnegative - why?

@ We have p(x) > 0 and log(p(x)) < 0, so every term in the sum is
negative.
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Entropy

@ The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative

constant):
Zp ) log(p

@ (Using shorthand p(x) for p(X = X).)

@ Entropy is always nonnegative - why?

@ We have p(x) > 0 and log(p(x)) < 0, so every term in the sum is
negative.

@ Whenis H(p) = 07
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Entropy

@ The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative

constant):
Zp ) log(p

@ (Using shorthand p(x) for p(X = X).)

@ Entropy is always nonnegative - why?

@ We have p(x) > 0 and log(p(x)) < 0, so every term in the sum is
negative.

@ Whenis H(p) = 07

@ If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.

David Rolnick COMP 761: Probability Il Oct 19, 2020 6/23



Entropy

@ The entropy of a probability distribution is defined like this, only
base e (easier to work with, just differs by a multiplicative

constant):
Zp ) log(p

@ (Using shorthand p(x) for p(X = X).)

@ Entropy is always nonnegative - why?

@ We have p(x) > 0 and log(p(x)) < 0, so every term in the sum is
negative.

@ Whenis H(p) = 07

@ If the only event with nonzero probability has p(x) = 1, so zero
uncertainty.

@ Continuous set of events:

- / p(x) log(p(x)) dx
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Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
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Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
@ Let py,..., pn be the probabilities of the different values.

n
H=-=>"pxlog(pk).
k=1
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Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
@ Let py,..., pn be the probabilities of the different values.

n
H=-=>"pxlog(pk).
k=1

@ How do we get an upper bound for this?

David Rolnick COMP 761: Probability Il Oct 19, 2020



Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
@ Let py,..., pn be the probabilities of the different values.

n
H=-=>"pxlog(pk).
k=1

@ How do we get an upper bound for this?
@ How could we use Jensen’s inequality? What function?
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Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
@ Let py,..., pn be the probabilities of the different values.

n
H=-=>"pxlog(pk).
k=1
@ How do we get an upper bound for this?
@ How could we use Jensen’s inequality? What function?
@ Let'stry zlog z. Is it concave or convex?
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Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
@ Let py,..., pn be the probabilities of the different values.

n
H=-=>"pxlog(pk).
k=1
@ How do we get an upper bound for this?
@ How could we use Jensen’s inequality? What function?
@ Let'stry zlog z. Is it concave or convex?
@ We have

d 1
E(zlogz) _z<z> +1(logz) =1+logz
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Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
@ Let py,..., pn be the probabilities of the different values.

n
H=-=>"pxlog(pk).
k=1
@ How do we get an upper bound for this?
@ How could we use Jensen’s inequality? What function?
@ Let'stry zlog z. Is it concave or convex?

@ We have
i(zlo z)=2z 1 +1(logz) =1+logz
dz\ 21094 =2z 92)= ¢
d? d 1
E(zlogz)_a(1+logz)_2.
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Entropy

If there are n different values for X, what is the maximum possible
value for the entropy?
@ Let py,..., pn be the probabilities of the different values.

n
H=-=>"pxlog(pk).
k=1
@ How do we get an upper bound for this?
@ How could we use Jensen’s inequality? What function?
@ Let'stry zlog z. Is it concave or convex?
@ We have
i(zlogz) =z <1> +1(logz) =1+logz
dz z
2
;Zz(zlogz) = :z (1+logz) = ;
@ Since z > 0 we have that zlog z is convex.
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Entropy

If there are n different events, what is the maximum possible value for
the entropy?
@ Let pq,...,pn be the probabilities of the different events.

n
H=—=>"pxlog(pk).
k=1

@ We have that zlog z is convex.
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Entropy
If there are n different events, what is the maximum possible value for

the entropy?
@ Let pq,...,pn be the probabilities of the different events.

n
H=—=>"pxlog(pk).
k=1

@ We have that zlog z is convex.
@ Then:

> k=1 pl;7|09(pk) . (p1 + - +pn) 0 (p1+n+pn)
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Entropy
If there are n different events, what is the maximum possible value for

the entropy?
@ Let pq,...,pn be the probabilities of the different events.

n
H=—=>"pxlog(pk).
k=1

@ We have that zlog z is convex.
@ Then:

> k=1 pl;7|09(pk) . (p1 + - +pn) 0 (p1+n+pn)

—1Io1
=%\ n )
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Entropy

If there are n different events, what is the maximum possible value for
the entropy?
@ Let pq,...,pn be the probabilities of the different events.

n
H=—=>"pxlog(pk).
k=1

@ We have that zlog z is convex.
@ Then:

> k=1 pl;7|09(pk) . (p1 + - +pn) 0 (p1+n+pn)

—1Io1
=%\ n )

@ Multiplying by —n, get H < —log(1/n) = log(n).
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Entropy
If there are n different events, what is the maximum possible value for

the entropy?
@ Let py,..., pn be the probabilities of the different events.

n
H=—=>"pxlog(pk).
k=1

@ We have that zlog z is convex.
@ Then:

> k=1 pl;7|09(pk) . (p1 + - +pn) 0 (p1+n+pn)

—1Io1
=%\ n )

@ Multiplying by —n, get H < —log(1/n) = log(n).
@ Is this value achievable? If so, when?

David Rolnick COMP 761: Probability Il Oct 19, 2020 8/23



Entropy

If there are n different events, what is the maximum possible value for
the entropy?
@ Let py,..., pn be the probabilities of the different events.

n
H=—=>"pxlog(pk).
k=1

@ We have that zlog z is convex.
@ Then:

> k=1 pl;7|09(pk) . (p1 + - +pn) 0 (p1+n+pn)

—1Io1
=%\ n )

@ Multiplying by —n, get H < —log(1/n) = log(n).
@ Is this value achievable? If so, when?
@ Yes! Equality in Jensen’s Inequality when all p, equal.
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Conditional entropy
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Conditional entropy

@ What happens if we know that X = x but don’t know Y = y?
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Conditional entropy

@ What happens if we know that X = x but don’t know Y = y?
@ How much additional information is needed to get Y?
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Conditional entropy

@ What happens if we know that X = x but don’t know Y = y?
@ How much additional information is needed to get Y?
@ Need —log(p(Y =y | X = x)).
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Conditional entropy

@ What happens if we know that X = x but don’t know Y = y?
@ How much additional information is needed to get Y?

@ Need —log(p(Y =y | X = x)).

@ Finding the expected value of that:

H(Y [ X) = ZP =X Y =y)(=log(p(Y =y | X = x)))

- - _ p(X=x,Y=y)
= Xz,yp(X_x,Y y)Iog( (X =) )
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Conditional entropy

@ What happens if we know that X = x but don’t know Y = y?
@ How much additional information is needed to get Y?

@ Need —log(p(Y =y | X = x)).

@ Finding the expected value of that:

HY | X) = Zp — X, Y = y) (~log(p(Y = y | X = x)))

- - _ p(X=x,Y=y)
= Xz,yp(X_x,Y y)Iog( (X =) )

@ This is the called the conditional entropy.
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Conditional entropy

@ What happens if we know that X = x but don’t know Y = y?
@ How much additional information is needed to get Y?

@ Need —log(p(Y =y | X = x)).

@ Finding the expected value of that:

H(Y [ X) = ZP =X Y =y)(=log(p(Y =y | X = x)))

- - _ p(X=x,Y=y)
= Xz,yp(X_x,Y y)Iog( (X =) )

@ This is the called the conditional entropy.
@ Compare to the standard entropy:

Zp x)log(p(X = x)).
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Conditional entropy

@ What happens if we know that X = x but don’t know Y = y?
@ How much additional information is needed to get Y?

@ Need —log(p(Y =y | X = x)).

@ Finding the expected value of that:

H(Y [ X) = ZP =X Y =y)(=log(p(Y =y | X = x)))

- - _ p(X=x,Y=y)
= gp(X_X,Y y)Iog( (X =) )

@ This is the called the conditional entropy.
@ Compare to the standard entropy:

Zp x)log(p(X = x)).

@ As with H(X), can show H(Y | X) > 0.
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Mutual information
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Mutual information

@ We define the mutual information:
I(X;Y)=H(Y)—H(Y | X).

David Rolnick COMP 761: Probability Il Oct 19, 2020 10/23



Mutual information

@ We define the mutual information:
I(X;Y)=H(Y)—H(Y | X).
@ Let’s expand it:

I(X;Y)==> p(Y =y)log(p(Y = y))
y

_ _ pX=x,Y=y)
+XZ};p(X_x,Y_y)Iog< pX = X) )
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Mutual information

@ We define the mutual information:
I(X;Y)=H(Y)—H(Y | X).
@ Let’s expand it:
I(X;Y)==> p(Y =y)log(p(Y = y))

y
+ Zp(X =x,Y=y)log <p(XpTXX7:Yx): y))

X,y
==Y p(X=xY=y)log(p(Y =y))
X,y

mxz&Y=n>

+Zp(X:x,Y:y)Iog<
X,y

:;p(X:X,YZ}’)log <p(X:xp(YZY)
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Mutual information

I(X: Y) = H(Y) = H(Y | X)
=S op(X = x.Y = y)log
X,y

p(X:XaYZy) )
pX=x)p(Y=y))
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Mutual information

I(X;Y) = H(Y) — H(Y | X)
:Zp(X:x, Y:y)log(
Xy

p(X=x,Y=y) )
pX=x)p(Y=y))

@ What can we learn from this?
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Mutual information

I(X;Y) = H(Y) — H(Y | X)
:Zp(X:x, Y:y)log(
Xy

p(X=x,Y=y) )
pX=x)p(Y=y))

@ What can we learn from this?
o If we switch X and Y, it's the same:

IX;Y) = I(Y: X) = H(X) — H(X | Y).
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Mutual information

I(X;Y) = H(Y) — H(Y | X)
:Zp(X:x,Y:y)Iog<

X7.y

p(X=x,Y=y) )
pX=x)p(Y=y))

@ What can we learn from this?
o If we switch X and Y, it's the same:

I(X;Y)=1(Y;X)=H(X)—H(X|Y).
@ If X and Y are independent, then

p(X=x,Y=y)
9 (p(X =x)p(Y =y)

>:Iog1 =0.
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Mutual information

I(X;Y) = H(Y) — H(Y | X)
:Zp(X:x,Y:y)Iog<

X7.y

p(X=x,Y=y) )
pX=x)p(Y=y))

@ What can we learn from this?
o If we switch X and Y, it's the same:

I(X;Y)=1(Y;X)=H(X)—H(X|Y).
@ If X and Y are independent, then

Iog( p(X=x,Y=y)

p(X =x)p(Y =y)

@ Can think of /(X; Y) as being the information gained about Y by
knowing X, or vice versa.

>:Iog1 =0.
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Mutual information

I(X;Y)=H(Y)—-H(Y | X)
~ Y p(X =x, Yzy)log(

X?y

pX=x,Y=y) )
p(X=x)p(Y=y))"
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Mutual information

I(X; Y) = H(Y) = H(Y | X)

@ Intuitively should be true that /(X; Y) > 0.
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Mutual information

I(X; Y) = H(Y) = H(Y | X)

@ Intuitively should be true that /(X; Y) > 0.
@ Can show by Jensen’s inequality.
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Mutual information

I(X; Y) = H(Y) = H(Y | X)

@ Intuitively should be true that /(X; Y) > 0.
@ Can show by Jensen’s inequality.

@ Unfortunately it is not true that log (%) is always
nonnegative.
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Continuous probability distributions
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Continuous probability distributions

@ Suppose we have a continuous-valued variable X.
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Continuous probability distributions

@ Suppose we have a continuous-valued variable X.

@ The probability of X = x is always 0 — for example, essentially
impossible that a random person is exactly 2.00000003 meters
high.
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Continuous probability distributions

@ Suppose we have a continuous-valued variable X.

@ The probability of X = x is always 0 — for example, essentially
impossible that a random person is exactly 2.00000003 meters
high.

@ In that case, we have a probability density function p(x) > 0.
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Continuous probability distributions

@ Suppose we have a continuous-valued variable X.

@ The probability of X = x is always 0 — for example, essentially
impossible that a random person is exactly 2.00000003 meters
high.

@ In that case, we have a probability density function p(x) > 0.

@ p(x) is not the probability of X = x, because that would be 0.
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Continuous probability distributions

@ Suppose we have a continuous-valued variable X.

@ The probability of X = x is always 0 — for example, essentially
impossible that a random person is exactly 2.00000003 meters
high.

@ In that case, we have a probability density function p(x) > 0.

@ p(x) is not the probability of X = x, because that would be 0.

@ Instead, can talk about the probability that X is between a and b:

/: p(x) dx.
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Continuous probability distributions

@ Suppose we have a continuous-valued variable X.

@ The probability of X = x is always 0 — for example, essentially
impossible that a random person is exactly 2.00000003 meters
high.

@ In that case, we have a probability density function p(x) > 0.

@ p(x) is not the probability of X = x, because that would be 0.

@ Instead, can talk about the probability that X is between a and b:

/: p(x) dx.

/OO p(x)dx = 1.

—0o0

@ And we have
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Continuous probability distributions

@ Suppose we have a continuous-valued variable X.

@ The probability of X = x is always 0 — for example, essentially
impossible that a random person is exactly 2.00000003 meters
high.

@ In that case, we have a probability density function p(x) > 0.

@ p(x) is not the probability of X = x, because that would be 0.

@ Instead, can talk about the probability that X is between a and b:

/: p(x) dx.

@ And we have -
/ p(x)dx = 1.

@ Note that p(x) can be bigger than 1 (though must be nonnegative
or there would be an interval [a, b] with negative probability).
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Uniform distribution
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Uniform distribution

@ The uniform distribution on [a, b] is the distribution where
a < x < band p(x) is equal everywhere.
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Uniform distribution

@ The uniform distribution on [a, b] is the distribution where
a < x < band p(x) is equal everywhere.

@ What is the right constant value C of p(x)?
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Uniform distribution

@ The uniform distribution on [a, b] is the distribution where
a < x < band p(x) is equal everywhere.

@ What is the right constant value C of p(x)?
@ We want:

1 :/_Zp(x)dx:/abp(x)dx

= /b Cdx = (Cx)x=p — (CX)x=a = C(b— a).
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Uniform distribution

@ The uniform distribution on [a, b] is the distribution where
a < x < band p(x) is equal everywhere.

@ What is the right constant value C of p(x)?
@ We want:

oo b
1:/_ p(x) dx:/a p(x) dx
= /b Cdx = (Cx)x=p — (CX)x=a = C(b— a).

@ Sop(x)=C=1/(b—a).

F(x)

A
b-a

JE

0 a b X
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Uniform distribution

()
i# o
b-a

0 a b X
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Uniform distribution

f(x)
i# — o

b-a
0 a b

@ p(x)=1/(b—a).
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Uniform distribution

f(x)
i# o
b-a
0 a b X

@ p(x)=1/(b—a).
@ What is the mean of p(x)?
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Uniform distribution

@ p(x)=1/(b—a).
@ What is the mean of p(x)?
@ Pretty clear that itis (a+ b)/2, but can also calculate:

I[*3[)(]=/(_1be,0(x)dx:/‘:x/(b_a)dx
(%) (e de G
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Uniform distribution
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Uniform distribution

@ p(x)=1/(b— a).
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Uniform distribution

@ p(x)=1/(b— a).
@ What about variance?
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Uniform distribution

@ p(x)=1/(b— a).
@ What about variance?

E[X?] = /bxzp(x) dx = /bxz/(b a)dx

R
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Uniform distribution

@ p(x)=1/(b— a).
@ What about variance?

E[X?] = /bxzp(x) dx = /bxz/(b a)dx
_(a x3 ) _a( x3 > -2 bPPtab+a
-~ \30b-a/,., \3b-a/,, 3b-a 3 '

@ So we have

Var[X] :]E[XZ] —E[X]2 _ b2—i-ab—|—32 B <a+b>2

3 2
_ 4p?+4ab+ 42 3(& +2ab+ bP)
B 12 ; 12
_bP-2ab+a (b-a)
12 12
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Univariate Gaussian
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Univariate Gaussian

@ The Gaussian or normal distribution N(y, o2) is given by:
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Univariate Gaussian

@ The Gaussian or normal distribution N(y, o2) is given by:

o1 (532)

p(x) = a\}ﬂ

@ Can calculate (with some thorny integrals) that indeed
S0 p(x) dx = 1
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Univariate Gaussian

@ The Gaussian or normal distribution N(y, o2) is given by:

o1 (532)

p(x) = a\}ﬂ

@ Can calculate (with some thorny integrals) that indeed
7 p(x)dx =1
@ And that the Gaussian has mean 1 and variance 2.
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Cool fact I: Adding independent Gaussian random
variables
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Cool fact I: Adding independent Gaussian random
variables

@ Suppose X and Y are independent random variables.
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Cool fact I: Adding independent Gaussian random
variables

@ Suppose X and Y are independent random variables.
@ We know E[X + Y] = E[X] + E[Y] and
Var[X, Y] = Var[X] + Var[Y].
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Cool fact I: Adding independent Gaussian random
variables

@ Suppose X and Y are independent random variables.

@ We know E[X + Y] = E[X] + E[Y] and
Var[X, Y] = Var[X] + Var[Y].

@ If X, Y are Gaussian, it’s better than that - their sum is Gaussian
too.
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Cool fact I: Adding independent Gaussian random
variables

@ Suppose X and Y are independent random variables.

@ We know E[X + Y] = E[X] + E[Y] and
Var[X, Y] = Var[X] + Var[Y].

@ If X, Y are Gaussian, it’s better than that - their sum is Gaussian
too.

o If X is distributed by N(u4,02) and Y is independently distributed
by N(u2,03), then X + Y is distributed by N(u1 + p2, 0% + 03).
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Cool fact Il: Maximum entropy distribution
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Cool fact Il: Maximum entropy distribution

@ N(u,o?) is the distribution with maximum entropy out of all
distributions with mean . and variance 2.
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Cool fact Il: Maximum entropy distribution

@ N(u,o?) is the distribution with maximum entropy out of all
distributions with mean . and variance 2.

@ (Can be proved with Lagrange multipliers.)
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Cool fact Il: Maximum entropy distribution

@ N(u,o?) is the distribution with maximum entropy out of all
distributions with mean . and variance 2.

@ (Can be proved with Lagrange multipliers.)

@ What is the maximum entropy distribution if you just assume it has
mean u?
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Cool fact Il: Maximum entropy distribution

@ N(u,o?) is the distribution with maximum entropy out of all
distributions with mean . and variance 2.

@ (Can be proved with Lagrange multipliers.)

@ What is the maximum entropy distribution if you just assume it has
mean u?

@ Suppose p(x) = 1/n for n different values with mean .
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Cool fact Il: Maximum entropy distribution

@ N(u,o?) is the distribution with maximum entropy out of all
distributions with mean . and variance 2.

@ (Can be proved with Lagrange multipliers.)

@ What is the maximum entropy distribution if you just assume it has
mean u?

@ Suppose p(x) = 1/n for n different values with mean .
@ Then, entropy is log(n).
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Cool fact Il: Maximum entropy distribution

@ N(u,o?) is the distribution with maximum entropy out of all
distributions with mean . and variance 2.

@ (Can be proved with Lagrange multipliers.)

@ What is the maximum entropy distribution if you just assume it has
mean u?

@ Suppose p(x) = 1/n for n different values with mean .
@ Then, entropy is log(n).
@ By taking n — oo, we can make the entropy arbitrarily big.

David Rolnick COMP 761: Probability Il Oct 19, 2020 19/23



Cool fact Il: Maximum entropy distribution

@ N(u,o?) is the distribution with maximum entropy out of all
distributions with mean . and variance 2.

@ (Can be proved with Lagrange multipliers.)

@ What is the maximum entropy distribution if you just assume it has
mean u?

@ Suppose p(x) = 1/n for n different values with mean .
@ Then, entropy is log(n).
@ By taking n — oo, we can make the entropy arbitrarily big.

@ So there isn’t a maximum if don’t constrain variance! Entropy can
go to infinity.
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Cool fact lll: Limit of binomial distribution
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Cool fact lll: Limit of binomial distribution

@ The graph of (}) for k = 0,1,..., n approaches the Gaussian.
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Cool fact lll: Limit of binomial distribution

@ The graph of (}) for k = 0,1,..., n approaches the Gaussian.
@ Therefore, number of heads for n coin flips is approx Gaussian:
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Cool fact lll: Limit of binomial distribution

@ The graph of (}) for k = 0,1,..., n approaches the Gaussian.

@ Therefore, number of heads for n coin flips is approx Gaussian:

@ More generally, the Central Limit Theorem says the sum of
Xi, ..., Xn drawn independently from the same distribution

approaches a Gaussian as n — oo regardless of the distribution.
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Random matrices
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Random matrices

@ Random things can be surprisingly predictable.
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Random matrices

@ Random things can be surprisingly predictable.

@ Given a large number n of fair coin flips, the expected number of
heads is n/2.
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Random matrices

@ Random things can be surprisingly predictable.

@ Given a large number n of fair coin flips, the expected number of
heads is n/2.

@ And we would be shocked to get n/4.
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Random matrices

@ Random things can be surprisingly predictable.

@ Given a large number n of fair coin flips, the expected number of
heads is n/2.

@ And we would be shocked to get n/4.
@ Same thing for big random matrices.
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Random matrices

@ Random things can be surprisingly predictable.

@ Given a large number n of fair coin flips, the expected number of
heads is n/2.

@ And we would be shocked to get n/4.
@ Same thing for big random matrices.
@ Random matrix is an entire field :)
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Random matrices

@ Random things can be surprisingly predictable.

@ Given a large number n of fair coin flips, the expected number of
heads is n/2.

@ And we would be shocked to get n/4.

@ Same thing for big random matrices.

@ Random matrix is an entire field :)

@ Useful in everything from quantum to machine learning.
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Example: Wigner’s semicircle law
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Example: Wigner’s semicircle law

@ We know the eigenvalues of a real symmetric matrix A € R™" are
real.
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Example: Wigner’s semicircle law

@ We know the eigenvalues of a real symmetric matrix A € R™" are
real.

@ What are the eigenvalues if n goes to infinity, and A is random?
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Example: Wigner’s semicircle law

@ We know the eigenvalues of a real symmetric matrix A € R™" are
real.

@ What are the eigenvalues if n goes to infinity, and A is random?

@ Let’s assume each entry taken independently of the others from a
Gaussian.

David Rolnick COMP 761: Probability Il Oct 19, 2020 22/23



Example: Wigner’s semicircle law

@ We know the eigenvalues of a real symmetric matrix A € R™" are
real.

@ What are the eigenvalues if n goes to infinity, and A is random?

@ Let’s assume each entry taken independently of the others from a
Gaussian.

@ Then if we do a histogram of n eigenvalues, it looks like a
semicircle!

P

0.006|
0.005|
0.004f
0.003
0.002|
0.001]
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Next time!

Linear Programs |
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