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Problem

Find a way to remove the maximum from a heap of n elements, while
preserving the heap property, in O(log n) time.

(Please don’t post your ideas in the chat just yet, we’ll discuss the
problem soon in class.)
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Course Announcements

@ For Problem 1 on the Problem Set, please do not just cite a result
about nf and O(-) or Q(-), would like at least an explanation for
why the definitions of O(-) and Q(-) hold here.

kR I ol

David Rolnick COMP 761: Graph Algorithms | Oct 30, 2020 3/17



Review: Heaps
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Review: Heaps

@ A max-heap is a binary tree in which the key stored in any node is
greater than the value stored by both its children.
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Review: Heaps

@ A max-heap is a binary tree in which the key stored in any node is
greater than the value stored by both its children.
@ A min-heap is the same, just with min instead of max.
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Review: Heaps

@ A max-heap is a binary tree in which the key stored in any node is
greater than the value stored by both its children.

@ A min-heap is the same, just with min instead of max.

@ We’'ll assume heaps are max-heaps here, but same logic will
apply to min-heaps.
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Review: Heaps

@ A max-heap is a binary tree in which the key stored in any node is
greater than the value stored by both its children.

@ A min-heap is the same, just with min instead of max.

@ We’'ll assume heaps are max-heaps here, but same logic will
apply to min-heaps.

@ The root node always must have the largest key.

1 2 3 4 5 6 7 8 9 10

[16[14]10] 879 ]3]2]4][1]
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Review: Heaps

@ A max-heap is a binary tree in which the key stored in any node is
greater than the value stored by both its children.

@ A min-heap is the same, just with min instead of max.

@ We’'ll assume heaps are max-heaps here, but same logic will
apply to min-heaps.

@ The root node always must have the largest key.

1 2 3 4 5 6 7 8 9 10

[16[14]10] 879 ]3]2]4][1]

@ We also assume in a heap that each row (set of nodes of a single
depth) is full except possibly the last one, so depth = ©(log n).
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Review: Heaps

@ A max-heap is a binary tree in which the key stored in any node is
greater than the value stored by both its children.

@ A min-heap is the same, just with min instead of max.

@ We’'ll assume heaps are max-heaps here, but same logic will
apply to min-heaps.

@ The root node always must have the largest key.

1 2 3 4 5 6 7 8 9 10

[16[14]10] 879 ]3]2]4][1]

@ We also assume in a heap that each row (set of nodes of a single
depth) is full except possibly the last one, so depth = ©(log n).

@ And that the last row has all its nodes as far left as possible (easy
by swapping left and right).
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Review: Priority queues

@ A max-priority queue is a data structure S that allows you to
perform the following operations

Insert(S, x), inserting key x into S.

Maximum(S), returns the maximum of S.

ExtractMax(S), removes the maximum from S.

IncreaseKey(S, i, x) takes the element at index i and increases it to

value x (assuming the key was smaller before).
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ExtractMax(S), removes the maximum from S.
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@ Similarly, a min-priority queue is a data structure allowing Insert,
Minimum, ExtractMin, and DecreaseKey.
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Review: Priority queues

@ A max-priority queue is a data structure S that allows you to
perform the following operations

Insert(S, x), inserting key x into S.

Maximum(S), returns the maximum of S.

ExtractMax(S), removes the maximum from S.

IncreaseKey(S, i, x) takes the element at index i and increases it to

value x (assuming the key was smaller before).

@ Similarly, a min-priority queue is a data structure allowing Insert,
Minimum, ExtractMin, and DecreaseKey.

@ Priority queues are useful across algorithms.
@ A max-heap can be used to implement a max-priority queue!
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Review: Priority queues

@ A max-priority queue is a data structure S that allows you to
perform the following operations

Insert(S, x), inserting key x into S.

Maximum(S), returns the maximum of S.

ExtractMax(S), removes the maximum from S.

IncreaseKey(S, i, x) takes the element at index i and increases it to

value x (assuming the key was smaller before).

@ Similarly, a min-priority queue is a data structure allowing Insert,
Minimum, ExtractMin, and DecreaseKey.

@ Priority queues are useful across algorithms.
@ A max-heap can be used to implement a max-priority queue!

@ (Likewise, a min-heap can be used to implement a min-priority
queue.)
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Heaps as priority queues

Operations we need: Insert, Maximum, ExtractMax, IncreaseKey.
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Heaps as priority queues

Operations we need: Insert, Maximum, ExtractMax, IncreaseKey.
@ Do we have any of these already in a max-heap?
@ We already have Maximum, since it’s the root.
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Heaps as priority queues

Operations we need: Insert, Maximum, ExtractMax, IncreaseKey.
@ Do we have any of these already in a max-heap?
@ We already have Maximum, since it’s the root.
@ Let’s now try to do ExtractMax.
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ExtractMax
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ExtractMax

@ Let’s take out the root and replace it with the last element of the
last row.
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ExtractMax

@ Let’s take out the root and replace it with the last element of the
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ExtractMax

@ Let’s take out the root and replace it with the last element of the
last row.

@ Of course, this is no longer a heap.
@ But the two sub-trees below the root must both be heaps.
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ExtractMax

@ Let’s take out the root and replace it with the last element of the
last row.

@ Of course, this is no longer a heap.
@ But the two sub-trees below the root must both be heaps.

@ So we can do the iterative swapping thing we did before to make a
heap.
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ExtractMax

@ Let’s take out the root and replace it with the last element of the
last row.

@ Of course, this is no longer a heap.
@ But the two sub-trees below the root must both be heaps.

@ So we can do the iterative swapping thing we did before to make a
heap.

@ # swaps = depth of whole tree = O(log n).
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ExtractMax

@ Let’s take out the root and replace it with the last element of the
last row.

@ Of course, this is no longer a heap.
@ But the two sub-trees below the root must both be heaps.

@ So we can do the iterative swapping thing we did before to make a
heap.

@ # swaps = depth of whole tree = O(log n).
@ So ExtractMax runs in O(log n).
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IncreaseKey
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IncreaseKey

@ Now we’ve done Maximum and ExtractMax.
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IncreaseKey

@ Now we’ve done Maximum and ExtractMax.
@ Let’'s do IncreaseKey.
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IncreaseKey

@ Now we’ve done Maximum and ExtractMax.
@ Let’'s do IncreaseKey.
@ The process is like the reverse of what we just did.
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IncreaseKey

@ Now we’ve done Maximum and ExtractMax.

@ Let’'s do IncreaseKey.

@ The process is like the reverse of what we just did.
@ Swap the key up until it is less than its parent:
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IncreaseKey

@ Now we’ve done Maximum and ExtractMax.

@ Let’'s do IncreaseKey.

@ The process is like the reverse of what we just did.
@ Swap the key up until it is less than its parent:

~
el /@@'\
14 ][)\ 14 (10

®
e
(
®
(

@ This takes O(log n) moves.

David Rolnick COMP 761: Graph Algorithms | Oct 30, 2020 8/17



Insert
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Insert

@ We can use our previous operations to do Insert.
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Insert

@ We can use our previous operations to do Insert.
@ Let’s add something really small, —oo, onto the end of the heap.
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Insert

@ We can use our previous operations to do Insert.
@ Let’s add something really small, —oo, onto the end of the heap.

@ lt clearly is still a heap because the new key is smaller than its
parent.
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Insert

@ We can use our previous operations to do Insert.
@ Let’s add something really small, —oo, onto the end of the heap.

@ lt clearly is still a heap because the new key is smaller than its
parent.

@ Now we can run IncreaseKey to make it whatever value we want.
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Insert

@ We can use our previous operations to do Insert.
@ Let’s add something really small, —oo, onto the end of the heap.

@ lt clearly is still a heap because the new key is smaller than its
parent.

@ Now we can run IncreaseKey to make it whatever value we want.
@ The time is just the time for IncreaseKey, O(log n).
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Putting it all together
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Putting it all together

@ We have a way to use a max-heap as a max-priority queue.
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Putting it all together

@ We have a way to use a max-heap as a max-priority queue.

@ Each of the operations Insert, Maximum, ExtractMax, and
IncreaseKey runs in O(log n) time (and Maximum is just O(1)
time).
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Putting it all together

@ We have a way to use a max-heap as a max-priority queue.

@ Each of the operations Insert, Maximum, ExtractMax, and
IncreaseKey runs in O(log n) time (and Maximum is just O(1)
time).

@ We'll see soon why this is useful.
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Heapsort
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Heapsort

@ We get a new sorting algorithm for free!
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Heapsort

@ We get a new sorting algorithm for free!
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@ We get a new sorting algorithm for free!
@ Make the list into a heap - time O(n).
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@ Do it again and again for the whole heap.
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Heapsort

@ We get a new sorting algorithm for free!
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Heapsort

@ We get a new sorting algorithm for free!
@ Make the list into a heap - time O(n).

@ Extract the maximum.

@ Do it again and again for the whole heap.
@ How long does it take (worst-case)?

@ Each ExtractMax call takes time O(log n).

Worst-case Average-case/expected
Algorithm running time running time
Insertion sort O(n?) On?)
Merge sort O(nlgn) O(nlgn)
Heapsort O(nlgn) —
Quicksort O(n?) O(nlgn) (expected)
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Heapsort

@ We get a new sorting algorithm for free!

@ Make the list into a heap - time O(n).

@ Extract the maximum.

@ Do it again and again for the whole heap.

@ How long does it take (worst-case)?

@ Each ExtractMax call takes time O(log n).

@ Total (worst-case) time n- O(log n) = O(nlog n).

Worst-case Average-case/expected
Algorithm running time running time
Insertion sort O(n?) On?)
Merge sort O(nlgn) O(nlgn)
Heapsort O(nlgn) —
Quicksort O(n?) O(nlgn) (expected)
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Review: Weighted, directed graphs
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Review: Weighted, directed graphs

@ In a directed graph, (/,) is not the same as (j, /).
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Review: Weighted, directed graphs

@ In a directed graph, (/,) is not the same as (j, /).
@ Can have either one, or both edges, or neither.
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Review: Weighted, directed graphs

@ In a directed graph, (/,) is not the same as (j, /).
@ Can have either one, or both edges, or neither.
@ Weighted graphs have a weight on every edge.
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Review: Weighted, directed graphs

@ In a directed graph, (/,) is not the same as (j, /).
@ Can have either one, or both edges, or neither.
@ Weighted graphs have a weight on every edge.

@ If (i,j) and (j, /) both exist, then can have different weights on
them.
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Shortest paths
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Shortest paths

@ A path between two vertices s and t is a sequence of directed
edges from s to t.
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Shortest paths

@ A path between two vertices s and t is a sequence of directed
edges from s to t.

@ The length of a path is the sum of weights along the edges.
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Shortest paths

@ A path between two vertices s and t is a sequence of directed
edges from s to t.

@ The length of a path is the sum of weights along the edges.

@ A shortest path between s and t is a path with minimal length
between them. (There might be several such paths).
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Shortest paths

@ A path between two vertices s and t is a sequence of directed
edges from s to t.

@ The length of a path is the sum of weights along the edges.

@ A shortest path between s and t is a path with minimal length
between them. (There might be several such paths).

@ We can also do this with an unweighted graph (all weights = 1)
an undirected graph (edges go both ways).
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Dijkstra’s algorithm
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Dijkstra’s algorithm

@ Problem: Connected graph G (weighted and directed) with
weights > 0. Given a vertex s, find the lengths of shortest paths
from s to all other vertices.
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Dijkstra’s algorithm

@ Problem: Connected graph G (weighted and directed) with
weights > 0. Given a vertex s, find the lengths of shortest paths
from s to all other vertices.

@ Is there any vertex that’s easy?
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Dijkstra’s algorithm

@ Problem: Connected graph G (weighted and directed) with
weights > 0. Given a vertex s, find the lengths of shortest paths
from s to all other vertices.

@ Is there any vertex that’s easy?
@ The vertex b that is closest to s must have distance = wgy,.
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Dijkstra’s algorithm

@ Problem: Connected graph G (weighted and directed) with
weights > 0. Given a vertex s, find the lengths of shortest paths
from s to all other vertices.

@ Is there any vertex that’s easy?
@ The vertex b that is closest to s must have distance = wgy,.
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Dijkstra’s algorithm

@ Problem: Connected graph G (weighted and directed) with
weights > 0. Given a vertex s, find the lengths of shortest paths
from s to all other vertices.

@ Is there any vertex that’s easy?

@ The vertex b that is closest to s must have distance = wgy,.
@ |s there another vertex that is easy?

@ Similar logic, vertex a = argming(min(Wsq, Wsp + Wpq))-
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Dijkstra’s algorithm
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Dijkstra’s algorithm
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Dijkstra’s algorithm

@ Maintain guesses for distances of all vertices from s.
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@ Start out with co everywhere, s at distance 0 from itself.
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Dijkstra’s algorithm

@ Maintain guesses for distances of all vertices from s.
@ Start out with co everywhere, s at distance 0 from itself.

@ At each step, pick unvisited vertex / with smallest distance
estimate (starting with s) - this estimate has to be correct.
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Dijkstra’s algorithm

@ Maintain guesses for distances of all vertices from s.
@ Start out with co everywhere, s at distance 0 from itself.

@ At each step, pick unvisited vertex / with smallest distance
estimate (starting with s) - this estimate has to be correct.

@ Visit all its neighbors j, and update distance estimate d(j) to
min(d(j), d(i) + wj).
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Dijkstra’s algorithm

@ Maintain guesses for distances of all vertices from s.
@ Start out with co everywhere, s at distance 0 from itself.

@ At each step, pick unvisited vertex / with smallest distance
estimate (starting with s) - this estimate has to be correct.

@ Visit all its neighbors j, and update distance estimate d(j) to
min(d(j), d(i) + wj).
@ Repeat.
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Next time!

Graph algorithms |l
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