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Problem
Find a way to remove the maximum from a heap of n elements, while
preserving the heap property, in O(log n) time.

(Please don’t post your ideas in the chat just yet, we’ll discuss the
problem soon in class.)
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Course Announcements

For Problem 1 on the Problem Set, please do not just cite a result
about nk and O(·) or Ω(·), would like at least an explanation for
why the definitions of O(·) and Ω(·) hold here.
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Review: Heaps

A max-heap is a binary tree in which the key stored in any node is
greater than the value stored by both its children.
A min-heap is the same, just with min instead of max.
We’ll assume heaps are max-heaps here, but same logic will
apply to min-heaps.
The root node always must have the largest key.

We also assume in a heap that each row (set of nodes of a single
depth) is full except possibly the last one, so depth = Θ(log n).
And that the last row has all its nodes as far left as possible (easy
by swapping left and right).
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Review: Priority queues

A max-priority queue is a data structure S that allows you to
perform the following operations

Insert(S, x), inserting key x into S.
Maximum(S), returns the maximum of S.
ExtractMax(S), removes the maximum from S.
IncreaseKey(S, i , x) takes the element at index i and increases it to
value x (assuming the key was smaller before).

Similarly, a min-priority queue is a data structure allowing Insert,
Minimum, ExtractMin, and DecreaseKey.
Priority queues are useful across algorithms.
A max-heap can be used to implement a max-priority queue!
(Likewise, a min-heap can be used to implement a min-priority
queue.)
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Heaps as priority queues
Operations we need: Insert, Maximum, ExtractMax, IncreaseKey.

Do we have any of these already in a max-heap?
We already have Maximum, since it’s the root.
Let’s now try to do ExtractMax.
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ExtractMax

Let’s take out the root and replace it with the last element of the
last row.
Of course, this is no longer a heap.
But the two sub-trees below the root must both be heaps.
So we can do the iterative swapping thing we did before to make a
heap.
# swaps = depth of whole tree = O(log n).
So ExtractMax runs in O(log n).
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IncreaseKey

Now we’ve done Maximum and ExtractMax.
Let’s do IncreaseKey.
The process is like the reverse of what we just did.
Swap the key up until it is less than its parent:

This takes O(log n) moves.
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Insert

We can use our previous operations to do Insert.
Let’s add something really small, −∞, onto the end of the heap.
It clearly is still a heap because the new key is smaller than its
parent.
Now we can run IncreaseKey to make it whatever value we want.
The time is just the time for IncreaseKey, O(log n).
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Putting it all together

We have a way to use a max-heap as a max-priority queue.
Each of the operations Insert, Maximum, ExtractMax, and
IncreaseKey runs in O(log n) time (and Maximum is just O(1)
time).
We’ll see soon why this is useful.
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Heapsort

We get a new sorting algorithm for free!
Make the list into a heap - time O(n).
Extract the maximum.
Do it again and again for the whole heap.
How long does it take (worst-case)?
Each ExtractMax call takes time O(log n).
Total (worst-case) time n ·O(log n) = O(n log n).
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Review: Weighted, directed graphs

In a directed graph, (i , j) is not the same as (j , i).
Can have either one, or both edges, or neither.
Weighted graphs have a weight on every edge.
If (i , j) and (j , i) both exist, then can have different weights on
them.
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Shortest paths

A path between two vertices s and t is a sequence of directed
edges from s to t .
The length of a path is the sum of weights along the edges.
A shortest path between s and t is a path with minimal length
between them. (There might be several such paths).
We can also do this with an unweighted graph (all weights = 1) or
an undirected graph (edges go both ways).
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Dijkstra’s algorithm

Problem: Connected graph G (weighted and directed) with
weights ≥ 0. Given a vertex s, find the lengths of shortest paths
from s to all other vertices.
Is there any vertex that’s easy?
The vertex b that is closest to s must have distance = wsb.
Is there another vertex that is easy?
Similar logic, vertex a = argminq(min(wsq,wsb + wbq)).
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Dijkstra’s algorithm

Maintain guesses for distances of all vertices from s.
Start out with∞ everywhere, s at distance 0 from itself.
At each step, pick unvisited vertex i with smallest distance
estimate (starting with s) - this estimate has to be correct.
Visit all its neighbors j , and update distance estimate d(j) to
min(d(j),d(i) + wij).
Repeat.
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Next time!

Graph algorithms II
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