
COMP 761: Lecture 28 – Binary Search Trees I

David Rolnick

November 9, 2020

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 1 / 16

Problem
Prove the Hockey Stick Identity:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

(Please don’t post your ideas in the chat just yet, we’ll discuss the problem
soon in class.)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 2 / 16

Course Announcements

Office hours right after class.
Problem Set 3 grades out, let Vincent and me know if you think
something should be reconsidered.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 3 / 16

Course Announcements

Office hours right after class.

Problem Set 3 grades out, let Vincent and me know if you think
something should be reconsidered.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 3 / 16

Course Announcements

Office hours right after class.
Problem Set 3 grades out, let Vincent and me know if you think
something should be reconsidered.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 3 / 16

Binary search trees

In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.
We require that for every node v :

The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.
We require that for every node v :

The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.

A binary search tree is a binary tree, each node storing a key.
We require that for every node v :

The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.

We require that for every node v :

The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.

We require that for every node v :

The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.

We require that for every node v :
The left subtree has all nodes less than or equal to v .

The right subtree has all nodes greater than or equal to v .
Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.

We require that for every node v :
The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.
We require that for every node v :

The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?

Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees
In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
Likewise for the right subtree.
A binary search tree is a binary tree, each node storing a key.
We require that for every node v :

The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

Can there be more than one binary search tree for a given set of keys?
Yes!

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 4 / 16

Binary search trees

In storing binary search trees, we generally store at each node v :
The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.
We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)
Maximum and minimum (find the max/min keys)
Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Binary search trees
In storing binary search trees, we generally store at each node v :

The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.
We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)
Maximum and minimum (find the max/min keys)
Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Binary search trees
In storing binary search trees, we generally store at each node v :

The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.

We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)
Maximum and minimum (find the max/min keys)
Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Binary search trees
In storing binary search trees, we generally store at each node v :

The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.
We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)
Maximum and minimum (find the max/min keys)
Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Binary search trees
In storing binary search trees, we generally store at each node v :

The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.
We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)

Maximum and minimum (find the max/min keys)
Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Binary search trees
In storing binary search trees, we generally store at each node v :

The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.
We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)
Maximum and minimum (find the max/min keys)

Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Binary search trees
In storing binary search trees, we generally store at each node v :

The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.
We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)
Maximum and minimum (find the max/min keys)
Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)

Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Binary search trees
In storing binary search trees, we generally store at each node v :

The key
Pointers to the left and right children (or null if they don’t exist)
Pointer to the parent

This allows us to move around the tree easily.
We will want the following operations within a binary search tree:

Search (find if a given key is in the tree)
Maximum and minimum (find the max/min keys)
Successor and predecessor (given a key in the tree, find the keys
immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 5 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?
If the root has key kx , go left if k < kx and go right if k > kx .
Continue, if at key ky , go left if k < ky and go right if k > ky .
Stop if ever have key = k or if no left/right child to move to.
How long does this take?
The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?
If the root has key kx , go left if k < kx and go right if k > kx .
Continue, if at key ky , go left if k < ky and go right if k > ky .
Stop if ever have key = k or if no left/right child to move to.
How long does this take?
The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?

If the root has key kx , go left if k < kx and go right if k > kx .
Continue, if at key ky , go left if k < ky and go right if k > ky .
Stop if ever have key = k or if no left/right child to move to.
How long does this take?
The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?
If the root has key kx , go left if k < kx and go right if k > kx .

Continue, if at key ky , go left if k < ky and go right if k > ky .
Stop if ever have key = k or if no left/right child to move to.
How long does this take?
The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?
If the root has key kx , go left if k < kx and go right if k > kx .
Continue, if at key ky , go left if k < ky and go right if k > ky .

Stop if ever have key = k or if no left/right child to move to.
How long does this take?
The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?
If the root has key kx , go left if k < kx and go right if k > kx .
Continue, if at key ky , go left if k < ky and go right if k > ky .
Stop if ever have key = k or if no left/right child to move to.

How long does this take?
The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?
If the root has key kx , go left if k < kx and go right if k > kx .
Continue, if at key ky , go left if k < ky and go right if k > ky .
Stop if ever have key = k or if no left/right child to move to.
How long does this take?

The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Search

Suppose we are given a value k and a binary search tree.

How can we check if k is stored in the tree?
If the root has key kx , go left if k < kx and go right if k > kx .
Continue, if at key ky , go left if k < ky and go right if k > ky .
Stop if ever have key = k or if no left/right child to move to.
How long does this take?
The time is O(h), where h is the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 6 / 16

Maximum and minimum

How to find the max key in the tree?

Keep going right in the tree until not possible anymore.
Similarly with the min, go left.
How long does this take?
Again, time is O(h), where h is the height.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 7 / 16

Maximum and minimum

How to find the max key in the tree?

Keep going right in the tree until not possible anymore.
Similarly with the min, go left.
How long does this take?
Again, time is O(h), where h is the height.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 7 / 16

Maximum and minimum

How to find the max key in the tree?

Keep going right in the tree until not possible anymore.

Similarly with the min, go left.
How long does this take?
Again, time is O(h), where h is the height.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 7 / 16

Maximum and minimum

How to find the max key in the tree?

Keep going right in the tree until not possible anymore.
Similarly with the min, go left.

How long does this take?
Again, time is O(h), where h is the height.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 7 / 16

Maximum and minimum

How to find the max key in the tree?

Keep going right in the tree until not possible anymore.
Similarly with the min, go left.
How long does this take?

Again, time is O(h), where h is the height.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 7 / 16

Maximum and minimum

How to find the max key in the tree?

Keep going right in the tree until not possible anymore.
Similarly with the min, go left.
How long does this take?
Again, time is O(h), where h is the height.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 7 / 16

Successor and predecessor

Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .

v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.

Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?

v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .

But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?

Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are
different.)

Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.
Let x be the LCA for v and w .
v and w must be on different subtrees from x since it is deepest.
Is v on the left or the right subtree?
v must be on the left subtree, w on the right, since kv < kw .
But then kv < kx < kw , so w isn’t the successor to vunless what?
Unless x equals v or w .

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 8 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .

w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
What is w here?

w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .

Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .

w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
What is w here?

w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.

How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?

If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.

Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).

Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Successor and predecessor
Given a node v with key kv , how to find the successor w to v , i.e. with the
smallest kw that is larger than kv ? (Let’s assume here all keys are different.)

Case 1: x equals v , so v is ancestor to w .
w must be the minimum of the right subtree of v .
Case 2: x equals w , so w is ancestor to v .
w must be the smallest ancestor of v with v on its left subtree.
How do we know which case we are in?
If v has a right child, then Case 1, otherwise Case 2.
Again, we have an algorithm in time O(h).
Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 9 / 16

Insert

How can we insert a new key k into a binary search tree?
We can search for where it would be if it were there and then add it:

This takes O(h) time again.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 10 / 16

Insert

How can we insert a new key k into a binary search tree?

We can search for where it would be if it were there and then add it:

This takes O(h) time again.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 10 / 16

Insert

How can we insert a new key k into a binary search tree?
We can search for where it would be if it were there and then add it:

This takes O(h) time again.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 10 / 16

Insert

How can we insert a new key k into a binary search tree?
We can search for where it would be if it were there and then add it:

This takes O(h) time again.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 10 / 16

Delete

Let’s try deleting a node z in the tree.
First suppose the node doesn’t have a left child. What do we do?
We can just move the right subtree up, with its root taking z ’s place.
Similarly if z is missing a right child.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 11 / 16

Delete

Let’s try deleting a node z in the tree.

First suppose the node doesn’t have a left child. What do we do?
We can just move the right subtree up, with its root taking z ’s place.
Similarly if z is missing a right child.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 11 / 16

Delete

Let’s try deleting a node z in the tree.
First suppose the node doesn’t have a left child. What do we do?

We can just move the right subtree up, with its root taking z ’s place.
Similarly if z is missing a right child.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 11 / 16

Delete

Let’s try deleting a node z in the tree.
First suppose the node doesn’t have a left child. What do we do?
We can just move the right subtree up, with its root taking z ’s place.

Similarly if z is missing a right child.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 11 / 16

Delete

Let’s try deleting a node z in the tree.
First suppose the node doesn’t have a left child. What do we do?
We can just move the right subtree up, with its root taking z ’s place.
Similarly if z is missing a right child.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 11 / 16

Delete

If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.
Which one do we need to pick?
We want to pick the minimum in the right subtree, since everything in the
right subtree has keys ≥ the key for z.
Here is how we can do that:

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 12 / 16

Delete

If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.

Which one do we need to pick?
We want to pick the minimum in the right subtree, since everything in the
right subtree has keys ≥ the key for z.
Here is how we can do that:

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 12 / 16

Delete

If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.
Which one do we need to pick?

We want to pick the minimum in the right subtree, since everything in the
right subtree has keys ≥ the key for z.
Here is how we can do that:

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 12 / 16

Delete

If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.
Which one do we need to pick?
We want to pick the minimum in the right subtree, since everything in the
right subtree has keys ≥ the key for z.

Here is how we can do that:

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 12 / 16

Delete

If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.
Which one do we need to pick?
We want to pick the minimum in the right subtree, since everything in the
right subtree has keys ≥ the key for z.
Here is how we can do that:

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 12 / 16

Delete

How long does this process take?
As before, we might have to go all the way down the tree, so O(h).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 13 / 16

Delete

How long does this process take?

As before, we might have to go all the way down the tree, so O(h).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 13 / 16

Delete

How long does this process take?
As before, we might have to go all the way down the tree, so O(h).

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 13 / 16

Expected height

We have a lot of algorithms running in O(h).
What is the maximum height with n keys?
Worst case, h = n − 1.
What is the minimum height with n keys?
Best case, h = O(log n).
Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Expected height

We have a lot of algorithms running in O(h).

What is the maximum height with n keys?
Worst case, h = n − 1.
What is the minimum height with n keys?
Best case, h = O(log n).
Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Expected height

We have a lot of algorithms running in O(h).
What is the maximum height with n keys?

Worst case, h = n − 1.
What is the minimum height with n keys?
Best case, h = O(log n).
Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Expected height

We have a lot of algorithms running in O(h).
What is the maximum height with n keys?
Worst case, h = n − 1.

What is the minimum height with n keys?
Best case, h = O(log n).
Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Expected height

We have a lot of algorithms running in O(h).
What is the maximum height with n keys?
Worst case, h = n − 1.
What is the minimum height with n keys?

Best case, h = O(log n).
Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Expected height

We have a lot of algorithms running in O(h).
What is the maximum height with n keys?
Worst case, h = n − 1.
What is the minimum height with n keys?
Best case, h = O(log n).

Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Expected height

We have a lot of algorithms running in O(h).
What is the maximum height with n keys?
Worst case, h = n − 1.
What is the minimum height with n keys?
Best case, h = O(log n).
Let’s consider a typical binary search tree.

Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Expected height

We have a lot of algorithms running in O(h).
What is the maximum height with n keys?
Worst case, h = n − 1.
What is the minimum height with n keys?
Best case, h = O(log n).
Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 14 / 16

Hockey stick identity

We will use the hockey stick identity in our proof:
n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

How can we prove this?

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.

We can use n = 1 as a base case:
0∑

i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
What is a good base case?

We can use n = 1 as a base case:
0∑

i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

How can we go from m to m + 1?

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)

=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Hockey stick identity
We will use the hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

Let’s use induction to prove it.
We can use n = 1 as a base case:

0∑
i=0

(
i + k

k

)
=

(
k
k

)
=

(
k + 1
k + 1

)
.

Now suppose it’s true for n = m, we have:
m−1∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
.

We can add
(m+k

k

)
to both sides:

m∑
i=0

(
i + k

k

)
=

(
m + k
k + 1

)
+

(
m + k

k

)
=

(
m + 1 + k

k + 1

)
.

Where the last step is by Pascal’s identity.
David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 15 / 16

Jensen’s inequality

We will also use another form of Jensen’s inequality - if f is convex, then:

E[f (x)] ≥ f (E[x]).

This is essentially the same as the weighted form of Jensen’s inequality
we have already seen:

n∑
i=1

pi f (xi) ≥ f

(
n∑

i=1

pixi

)

if pi are nonnegative with
∑n

i=1 pi = 1.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 16 / 16

Jensen’s inequality

We will also use another form of Jensen’s inequality - if f is convex, then:

E[f (x)] ≥ f (E[x]).

This is essentially the same as the weighted form of Jensen’s inequality
we have already seen:

n∑
i=1

pi f (xi) ≥ f

(
n∑

i=1

pixi

)

if pi are nonnegative with
∑n

i=1 pi = 1.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 16 / 16

Jensen’s inequality

We will also use another form of Jensen’s inequality - if f is convex, then:

E[f (x)] ≥ f (E[x]).

This is essentially the same as the weighted form of Jensen’s inequality
we have already seen:

n∑
i=1

pi f (xi) ≥ f

(
n∑

i=1

pixi

)

if pi are nonnegative with
∑n

i=1 pi = 1.

David Rolnick COMP 761: Binary Search Trees I Nov 9, 2020 16 / 16

