COMP 761: Lecture 28 — Binary Search Trees |

David Rolnick

November 9, 2020

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 1/16

Problem

Prove the Hockey Stick Identity:

Nov 9, 2020 2/16

»
3
O
=
=
e
@
b33
)
>
@
=
o
1)
L
o
=
Q
O

Course Announcements

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 3/16

Course Announcements

@ Office hours right after class.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 3/16

Course Announcements

@ Office hours right after class.

@ Problem Set 3 grades out, let Vincent and me know if you think
something should be reconsidered.

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

3/16

Binary search trees

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 4/16

Binary search trees

@ In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 4/16

Binary search trees

@ In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.
@ Likewise for the right subtree.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 4/16

Binary search trees

@ In a binary tree, we say the leff subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

@ Likewise for the right subtree.

@ A binary search tree is a binary tree, each node storing a key.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 4/16

Binary search trees

@ In a binary tree, we say the leff subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

@ Likewise for the right subtree.

@ A binary search tree is a binary tree, each node storing a key.

@ We require that for every node v:

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

4/16

Binary search trees

@ In a binary tree, we say the leff subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

@ Likewise for the right subtree.

@ A binary search tree is a binary tree, each node storing a key.

@ We require that for every node v:
e The left subtree has all nodes less than or equal to v.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

4/16

Binary search trees

@ In a binary tree, we say the leff subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

@ Likewise for the right subtree.

@ A binary search tree is a binary tree, each node storing a key.

@ We require that for every node v:
e The left subtree has all nodes less than or equal to v.
o The right subtree has all nodes greater than or equal to v.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

4/16

Binary search trees

@ In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

@ Likewise for the right subtree.

@ A binary search tree is a binary tree, each node storing a key.

@ We require that for every node v:

e The left subtree has all nodes less than or equal to v.
e The right subtree has all nodes greater than or equal to v.

@ Can there be more than one binary search tree for a given set of keys?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 4/16

Binary search trees

@ In a binary tree, we say the left subtree of a node v is the left child (if it
exists) and the rest of the subtree rooted at the left child.

@ Likewise for the right subtree.

@ A binary search tree is a binary tree, each node storing a key.

@ We require that for every node v:

e The left subtree has all nodes less than or equal to v.
@ The right subtree has all nodes greater than or equal to v.

@ Can there be more than one binary search tree for a given set of keys?
@ Yes!

(a) (b)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 4/16

Binary search trees

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Binary search trees

@ In storing binary search trees, we generally store at each node v:

o The key
@ Pointers to the left and right children (or null if they don’t exist)
e Pointer to the parent

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Binary search trees

@ In storing binary search trees, we generally store at each node v:

o The key
@ Pointers to the left and right children (or null if they don’t exist)
e Pointer to the parent

@ This allows us to move around the tree easily.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Binary search trees

@ In storing binary search trees, we generally store at each node v:

o The key
@ Pointers to the left and right children (or null if they don’t exist)
e Pointer to the parent

@ This allows us to move around the tree easily.
@ We will want the following operations within a binary search tree:

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Binary search trees

@ In storing binary search trees, we generally store at each node v:

o The key
@ Pointers to the left and right children (or null if they don’t exist)
e Pointer to the parent

@ This allows us to move around the tree easily.

@ We will want the following operations within a binary search tree:
o Search (find if a given key is in the tree)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Binary search trees

@ In storing binary search trees, we generally store at each node v:

o The key
@ Pointers to the left and right children (or null if they don’t exist)
e Pointer to the parent

@ This allows us to move around the tree easily.

@ We will want the following operations within a binary search tree:

o Search (find if a given key is in the tree)
@ Maximum and minimum (find the max/min keys)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Binary search trees

@ In storing binary search trees, we generally store at each node v:
o The key
@ Pointers to the left and right children (or null if they don’t exist)
e Pointer to the parent

@ This allows us to move around the tree easily.

@ We will want the following operations within a binary search tree:
o Search (find if a given key is in the tree)
@ Maximum and minimum (find the max/min keys)
@ Successor and predecessor (given a key in the tree, find the keys

immediately greater and less than it)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Binary search trees

@ In storing binary search trees, we generally store at each node v:
o The key
@ Pointers to the left and right children (or null if they don’t exist)
e Pointer to the parent

@ This allows us to move around the tree easily.

@ We will want the following operations within a binary search tree:
Search (find if a given key is in the tree)

@ Maximum and minimum (find the max/min keys)

@ Successor and predecessor (given a key in the tree, find the keys

immediately greater and less than it)
Insert and delete (add or remove a new key)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 5/16

Search

David Rolnicl : Binary Search Trees | Nov 9, 2020 6/16

Search

@ Suppose we are given a value k and a binary search tree.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 6/16

Search

@ Suppose we are given a value k and a binary search tree.

@ How can we check if k is stored in the tree?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 6/16

Search

@ Suppose we are given a value k and a binary search tree.

@ How can we check if k is stored in the tree?
@ If the root has key ky, go left if k < ky and go right if kK > k.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 6/16

Search

@ Suppose we are given a value k and a binary search tree.

@ How can we check if k is stored in the tree?
@ If the root has key k, go left if k < ky and go right if k > k.
@ Continue, if at key ky, go left if k < k, and go right if kK > k.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 6/16

Search

@ Suppose we are given a value k and a binary search tree.

@ How can we check if k is stored in the tree?

@ If the root has key k, go left if k < ky and go right if k > k.
@ Continue, if at key ky, go left if k < k, and go right if kK > k.
@ Stop if ever have key = k or if no left/right child to move to.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 6/16

Search

@ Suppose we are given a value k and a binary search tree.

@ How can we check if k is stored in the tree?

@ If the root has key k, go left if k < ky and go right if k > k.
@ Continue, if at key ky, go left if k < k, and go right if kK > k.
@ Stop if ever have key = k or if no left/right child to move to.
@ How long does this take?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 6/16

Search

@ Suppose we are given a value k and a binary search tree.

@ How can we check if k is stored in the tree?

@ If the root has key k, go left if k < ky and go right if k > k.
@ Continue, if at key ky, go left if k < k, and go right if kK > k.
@ Stop if ever have key = k or if no left/right child to move to.
@ How long does this take?

@ The time is O(h), where his the height of the tree (=maximum depth of
all nodes).

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 6/16

Maximum and minimum

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 7116

Maximum and minimum

@ How to find the max key in the tree?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 7116

Maximum and minimum

@ How to find the max key in the tree?

@ Keep going right in the tree until not possible anymore.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 7/16

Maximum and minimum

@ How to find the max key in the tree?

@ Keep going right in the tree until not possible anymore.
@ Similarly with the min, go left.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 7/16

Maximum and minimum

@ How to find the max key in the tree?

@ Keep going right in the tree until not possible anymore.
@ Similarly with the min, go left.
@ How long does this take?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 7/16

Maximum and minimum

@ How to find the max key in the tree?

@ Keep going right in the tree until not possible anymore.
@ Similarly with the min, go left.

@ How long does this take?

@ Again, time is O(h), where h is the height.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 7/16

Successor and predecessor

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

@ Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

@ Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

@ Let x be the LCA for v and w.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

@ Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

@ Let x be the LCA for v and w.
@ v and w must be on different subtrees from x since it is deepest.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

@ Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

@ Let x be the LCA for v and w.
@ v and w must be on different subtrees from x since it is deepest.
@ Is v on the left or the right subtree?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

@ Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

@ Let x be the LCA for v and w.

@ v and w must be on different subtrees from x since it is deepest.

@ Is v on the left or the right subtree?

@ v must be on the left subtree, w on the right, since k, < k.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

@ Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

@ Let x be the LCA for v and w.

@ v and w must be on different subtrees from x since it is deepest.

@ Is v on the left or the right subtree?

@ v must be on the left subtree, w on the right, since k, < k.

@ But then k, < ky < ky, SO w isn’t the successor to v....unless what?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

@ Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are
different.)

@ Any two nodes in the tree have a lowest common ancestor (LCA) = the
deepest node in the tree that is an ancestor to both.

Let x be the LCA for v and w.

v and w must be on different subtrees from x since it is deepest.

Is v on the left or the right subtree?

v must be on the left subtree, w on the right, since k, < k.

But then k, < ky < ky, SO w isn’t the successor to v....unless what?
Unless x equals v or w.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 8/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are different.)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.
@ Whatis w here?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.
@ w must be the minimum of the right subtree of v.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k,, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.
@ w must be the minimum of the right subtree of v.
@ Case 2: x equals w, so w is ancestor to v.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k,, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.

@ w must be the minimum of the right subtree of v.
@ Case 2: x equals w, so w is ancestor to v.

@ Whatis w here?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k,, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.

@ w must be the minimum of the right subtree of v.

@ Case 2: x equals w, so w is ancestor to v.

@ w must be the smallest ancestor of v with v on its left subtree.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k,, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.

@ w must be the minimum of the right subtree of v.

@ Case 2: x equals w, so w is ancestor to v.

@ w must be the smallest ancestor of v with v on its left subtree.
@ How do we know which case we are in?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k,, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.

@ w must be the minimum of the right subtree of v.

@ Case 2: x equals w, so w is ancestor to v.

@ w must be the smallest ancestor of v with v on its left subtree.
@ How do we know which case we are in?

@ If v has a right child, then Case 1, otherwise Case 2.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020

9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k,, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.

@ w must be the minimum of the right subtree of v.

@ Case 2: x equals w, so w is ancestor to v.

@ w must be the smallest ancestor of v with v on its left subtree.
@ How do we know which case we are in?

@ If v has a right child, then Case 1, otherwise Case 2.

@ Again, we have an algorithm in time O(h).

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 9/16

Successor and predecessor

Given a node v with key k,, how to find the successor w to v, i.e. with the
smallest k,, that is larger than k,? (Let's assume here all keys are different.)

@ Case 1: x equals v, so v is ancestor to w.

@ w must be the minimum of the right subtree of v.

@ Case 2: x equals w, so w is ancestor to v.

@ w must be the smallest ancestor of v with v on its left subtree.
@ How do we know which case we are in?

@ If v has a right child, then Case 1, otherwise Case 2.

@ Again, we have an algorithm in time O(h).

@ Similar process for finding the predecessor.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 9/16

Insert

David Rolnicl : Binary Search Trees |

Insert

@ How can we insert a new key k into a binary search tree?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 10/16

Insert

@ How can we insert a new key k into a binary search tree?
@ We can search for where it would be if it were there and then add it:

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 10/16

Insert

@ How can we insert a new key k into a binary search tree?
@ We can search for where it would be if it were there and then add it:

@ This takes O(h) time again.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 10/16

Delete

David Rolnicl : Binary Search Trees |

Delete

@ Let’s try deleting a node z in the tree.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 11/16

Delete

@ Let’s try deleting a node z in the tree.
@ First suppose the node doesn’t have a left child. What do we do?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 11/16

Delete

@ Let’s try deleting a node z in the tree.
@ First suppose the node doesn’t have a left child. What do we do?
@ We can just move the right subtree up, with its root taking z’s place.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 11/16

Delete

@ Let’s try deleting a node z in the tree.

@ First suppose the node doesn’t have a left child. What do we do?

@ We can just move the right subtree up, with its root taking z’s place.
@ Similarly if z is missing a right child.

q q
(a) z I (5 r
NIL r ’ '
q q
(b) 7 wnin- é i
,# \.
I NIL

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 11/16

Delete

David Rolnicl : Binary Search Trees |

Delete

@ If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 12/16

Delete

@ If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.

@ Which one do we need to pick?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 12/16

Delete

@ If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.

@ Which one do we need to pick?

@ We want to pick the minimum in the right subtree, since everything in the
right subtree has keys > the key for z.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 12/16

Delete

@ If z has both left and right subtrees, we can try replacing it by a node in
the right subtree.

@ Which one do we need to pick?

@ We want to pick the minimum in the right subtree, since everything in the
right subtree has keys > the key for z.

@ Here is how we can do that:

(©)

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 12/16

Delete

q
©)'
. x
q ! q
) z .) b
l , ! NIL r !)
[of Q = SN RN RN
/, /’ | /
) . Q * Q
NIL X - |

13/16

: Binary Search Trees |

David Rolnicl

Delete

©

q q
@ z —— 2 y
! r ! NIL r
N AN SN SN
SN SN A
’ @
NIL X S

SN

@ How long does this process take?

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

Delete

,
, .
q q
z y - y
1 NIL r ! 4
B " /I N ’ : /(
=@ =@

@ How long does this process take?
@ As before, we might have to go all the way down the tree, so O(h).

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 13/16

Expected height

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 14/16

Expected height

@ We have a lot of algorithms running in O(h).

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 14/16

Expected height

@ We have a lot of algorithms running in O(h).
@ What is the maximum height with n keys?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 14/16

Expected height

@ We have a lot of algorithms running in O(h).
@ What is the maximum height with n keys?
@ Worst case, h=n—1.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 14/16

Expected height

@ We have a lot of algorithms running in O(h).
@ What is the maximum height with n keys?

@ Worst case, h=n—1.

@ What is the minimum height with n keys?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 14/16

Expected height

@ We have a lot of algorithms running in O(h).

@ What is the maximum height with n keys?
@ Worst case, h=n—1.

@ What is the minimum height with n keys?
@ Best case, h = O(log n).

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

14/16

Expected height

@ We have a lot of algorithms running in O(h).
@ What is the maximum height with n keys?

@ Worst case, h=n—1.

@ What is the minimum height with n keys?

@ Best case, h = O(log n).

@ Let’s consider a typical binary search tree.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 14/16

Expected height

@ We have a lot of algorithms running in O(h).
@ What is the maximum height with n keys?

@ Worst case, h=n—1.

What is the minimum height with n keys?
Best case, h = O(log n).

Let's consider a typical binary search tree.

Suppose that we insert {1,2, ..., n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 14/16

Hockey stick identity

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 15/16

Hockey stick identity

@ We will use the hockey stick identity in our proof:

(V)6

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 15/16

Hockey stick identity

@ We will use the hockey stick identity in our proof:

(5=

@ How can we prove this?

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Hockey stick identity

@ We will use the hockey stick identity in our proof:

(V)

@ Let’s use induction to prove it.

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Hockey stick identity

@ We will use the hockey stick identity in our proof:

(5=

@ Let’s use induction to prove it.
@ What is a good base case?

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Hockey stick identity
@ We will use the hockey stick identity in our proof:
i+ k n+k
2(V)-G)

@ Let’s use induction to prove it.
@ We canuse n= 1 as a base case:

(W)= ()-02)

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Hockey stick identity
@ We will use the hockey stick identity in our proof:
i+ k n+k
2(V)-G)

@ Let’s use induction to prove it.
@ We canuse n= 1 as a base case:

()= () -(2)

@ Now suppose it’s true for n = m, we have:

R (0)-(0)

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Hockey stick identity
@ We will use the hockey stick identity in our proof:

(5=

@ Let’s use induction to prove it.
@ We canuse n= 1 as a base case:

()= () =()

@ Now suppose it’s true for n = m, we have:

(4= ()

@ How can we go frommto m+1?

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Hockey stick identity
@ We will use the hockey stick identity in our proof:
i+ k n+k
2(V)-G)

@ Let’s use induction to prove it.
@ We canuse n= 1 as a base case:

()= () -(2)

@ Now suppose it’s true for n = m, we have:

(3 52)

@ We can add (") to both sides:
i+ k m+ k m+ k
L)))

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Hockey stick identity
@ We will use the hockey stick identity in our proof:
i+ k n+k
2(V)-G)

@ Let’s use induction to prove it.
@ We canuse n= 1 as a base case:

()= () -(2)

@ Now suppose it’s true for n = m, we have:

(3 52)

@ We can add (") to both sides:

(W)= () ()= ()

@ Where the last step is by Pascal’s identity.

David Rolnick COMP 761: Binary Search Trees |

Nov 9, 2020

15/16

Jensen’s inequality

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 16/16

Jensen’s inequality
@ We will also use another form of Jensen’s inequality - if f is convex, then:

E[f(x)] = f(E[x]).

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 16/16

Jensen’s inequality
@ We will also use another form of Jensen’s inequality - if f is convex, then:
E[f(x)] = f(E[x])-

@ This is essentially the same as the weighted form of Jensen’s inequality
we have already seen:

Z,Oif(Xi) > f (Z PiXi>
i—1 pm

if p; are nonnegative with 257:1 pi=1.

David Rolnick COMP 761: Binary Search Trees | Nov 9, 2020 16/16

