
COMP 761: Lecture 29 – Binary Search Trees II

David Rolnick

November 11, 2020

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 1 / 25



Problem
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

(Please don’t post your ideas in the chat just yet, we’ll discuss the problem
soon in class.)

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 2 / 25



Course Announcements

Problem set 5 is out!
Office hours: Vincent Thu at 10:30 am, David Fri at 10 am

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 3 / 25



Course Announcements

Problem set 5 is out!

Office hours: Vincent Thu at 10:30 am, David Fri at 10 am

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 3 / 25



Course Announcements

Problem set 5 is out!
Office hours: Vincent Thu at 10:30 am, David Fri at 10 am

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 3 / 25



Review: Binary search trees

A binary search tree is a binary tree, each node storing a key.

We require that for every node v :
The left subtree has all nodes less than or equal to v .
The right subtree has all nodes greater than or equal to v .

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 4 / 25



Review: Expected height

We have a lot of algorithms running in O(h).
Maximum height with n keys: h = n − 1.
Minimum height: h = O(log n).
Let’s consider a typical binary search tree.
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random
order. What is the expected height?

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 5 / 25



Review: Hockey stick identity
Hockey stick identity in our proof:

n−1∑
i=0

(
i + k

k

)
=

(
n + k
k + 1

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 6 / 25



Review: Jensen’s inequality

We will also use another form of Jensen’s inequality - if f is convex, then:

E[f (x)] ≥ f (E[x ]).

This is essentially the same as the weighted form of Jensen’s inequality
we have already seen:

n∑
i=1

pi f (xi) ≥ f

(
n∑

i=1

pixi

)

if pi are nonnegative with
∑n

i=1 pi = 1.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 7 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].

The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
What is the root of the tree?

The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.

Induction!
Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
How can we use this?

Induction!
Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.

It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)]

=
2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)] =

2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)] =

2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ])

=
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

Let Xn be the height of the tree, so we are looking for E[Xn].
The root of the tree is whatever i we insert first, and it doesn’t change by
inserting new keys.
Induction!

Xn = 1 + max(Xi−1,Xn−i).

Note that i is itself a random variable.
It will be useful to define Yn = 2Xn :

Yn = 2 max(Yi−1,Yn−i) ≤ 2(Yi−1 + Yn−i)

Since each i is equally likely:

E[Yn] ≤
n∑

i=1

1
n
E[2(Yi−1 + Yn−i)] =

2
n

n∑
i=1

(E[Yi−1] + E[Yn−i ])

=
2
n

n−1∑
i=0

(E[Yi ] + E[Yn−1−i ]) =
4
n

n−1∑
i=0

E[Yi ].

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 8 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)

=
1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)

=
1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)

=
1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)

=
1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)

By the hockey stick identity, this is just

1
n

(
n + 3

4

)

=
1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
What is the right-hand side equal to?

By the hockey stick identity, this is just

1
n

(
n + 3

4

)

=
1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)

=
1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)
=

1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)
=

1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!

=
1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)
=

1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!

=
1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have a recurrence:

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ].

Let’s try to prove by induction:

E[Yn] ≤
1
4

(
n + 3

3

)
.

Base case: Y1 = 1 ≤ 1
4

(4
3

)
.

Assuming it holds for all i < n, the recurrence is just

E[Yn] ≤
4
n

n−1∑
i=0

E[Yi ] ≤
4
n

n−1∑
i=0

1
4

(
i + 3

3

)
=

1
n

n−1∑
i=0

(
i + 3

3

)
By the hockey stick identity, this is just

1
n

(
n + 3

4

)
=

1
n

(n + 3)!
4!(n − 1)!

=
(n + 3)!

4!n!
=

1
4
(n + 3)!

3!n!
=

1
4

(
n + 3

3

)
.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 9 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].

How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?

We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

Is f (x) = 2x convex/concave/neither?

We have 2x = (elog 2)x = e(log 2)x , so

d
dx

2x =
d
dx

e(log 2)x = (log 2)e(log 2)x

d2

dx2 2x = (log 2)
d
dx

e(log 2)x = (log 2)2e(log 2)x = (log 2)22x > 0.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

Is f (x) = 2x convex/concave/neither?
We have 2x = (elog 2)x = e(log 2)x , so

d
dx

2x =
d
dx

e(log 2)x = (log 2)e(log 2)x

d2

dx2 2x = (log 2)
d
dx

e(log 2)x = (log 2)2e(log 2)x = (log 2)22x > 0.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Expected height
Suppose that we insert {1,2, . . . ,n} into a binary search tree in random order.
What is the expected height?

So we have proven that:

E[Yn] ≤
1
4

(
n + 3

3

)
.

But we want E[Xn].
How do we go from E[Yn] = E[2Xn ] to E[Xn]?
We have Jensen’s Inequality:

E[f (x)] ≥ f (E[x ]) if f is convex.

f (x) = 2x is convex, so:

1
4

(
n + 3

3

)
≥ E[Yn] = E[2Xn ] ≥ 2E[Xn].

Therefore E[Xn] = O
(

log
(

1
4

(n+3
3

)))
= O(log n) , since

log(p(n)) = O(log n) for any polynomial p(n) (e.g. log(n3) = 3 log n).
David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 10 / 25



Running time for operations

Therefore, in many cases we may expect binary search tree operations to
be O(log n).
However, this kind of average-case analysis doesn’t necessarily help with
any particular tree.
We will now see a way to make sure that h = O(log n) not O(n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 11 / 25



Running time for operations

Therefore, in many cases we may expect binary search tree operations to
be O(log n).

However, this kind of average-case analysis doesn’t necessarily help with
any particular tree.
We will now see a way to make sure that h = O(log n) not O(n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 11 / 25



Running time for operations

Therefore, in many cases we may expect binary search tree operations to
be O(log n).
However, this kind of average-case analysis doesn’t necessarily help with
any particular tree.

We will now see a way to make sure that h = O(log n) not O(n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 11 / 25



Running time for operations

Therefore, in many cases we may expect binary search tree operations to
be O(log n).
However, this kind of average-case analysis doesn’t necessarily help with
any particular tree.
We will now see a way to make sure that h = O(log n) not O(n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 11 / 25



Red-black trees

Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.
All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).

Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.
All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.
All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.

Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.
All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.

Each node has a color, either red or black.
The root is black.
All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.

The root is black.
All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.

All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.
All the leaves are black.

If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.
All the leaves are black.
If a node is red, both its children are colored black.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees
Red-black trees are a type of self-balancing tree, in which operations on
the tree ensure it has height O(log n).
Specifically, a red-black tree is a binary search tree with the following
conditions.

Each node stores a key except the leaves, which store NIL.
Each node except the leaves has two children.
Each node has a color, either red or black.
The root is black.
All the leaves are black.
If a node is red, both its children are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 12 / 25



Red-black trees

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 13 / 25



Definitions

The height of a node in a rooted tree is the number of layers it is from the
bottom (bottom layer = height 0, next layer = height 1, etc.)
Formally, the height of a node equals the height of the tree minus the
depth of the node.
In a red-black tree, the black-height bh(x) of a node x is the number of
black nodes on a path from x to a leaf descendant (not including the node
x itself if it is black).
We say that an internal node of a red-black tree is any node that isn’t a
leaf (so any node containing a key).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 14 / 25



Definitions

The height of a node in a rooted tree is the number of layers it is from the
bottom (bottom layer = height 0, next layer = height 1, etc.)

Formally, the height of a node equals the height of the tree minus the
depth of the node.
In a red-black tree, the black-height bh(x) of a node x is the number of
black nodes on a path from x to a leaf descendant (not including the node
x itself if it is black).
We say that an internal node of a red-black tree is any node that isn’t a
leaf (so any node containing a key).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 14 / 25



Definitions

The height of a node in a rooted tree is the number of layers it is from the
bottom (bottom layer = height 0, next layer = height 1, etc.)
Formally, the height of a node equals the height of the tree minus the
depth of the node.

In a red-black tree, the black-height bh(x) of a node x is the number of
black nodes on a path from x to a leaf descendant (not including the node
x itself if it is black).
We say that an internal node of a red-black tree is any node that isn’t a
leaf (so any node containing a key).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 14 / 25



Definitions

The height of a node in a rooted tree is the number of layers it is from the
bottom (bottom layer = height 0, next layer = height 1, etc.)
Formally, the height of a node equals the height of the tree minus the
depth of the node.
In a red-black tree, the black-height bh(x) of a node x is the number of
black nodes on a path from x to a leaf descendant (not including the node
x itself if it is black).

We say that an internal node of a red-black tree is any node that isn’t a
leaf (so any node containing a key).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 14 / 25



Definitions

The height of a node in a rooted tree is the number of layers it is from the
bottom (bottom layer = height 0, next layer = height 1, etc.)
Formally, the height of a node equals the height of the tree minus the
depth of the node.
In a red-black tree, the black-height bh(x) of a node x is the number of
black nodes on a path from x to a leaf descendant (not including the node
x itself if it is black).
We say that an internal node of a red-black tree is any node that isn’t a
leaf (so any node containing a key).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 14 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

What technique can we try to prove this?

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?

Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).

Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
What is a good base case?

Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.

Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.

Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.

If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.

Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.

Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.

So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
Claim: The subtree rooted at a node x has at least 2bh(x) − 1 internal nodes.

Let’s try induction. What can we induct on?
Let’s induct on the height of x (not the black-height).
Base case as small as possible: height=0.
Then x is a leaf and bh(x) = 0. There are indeed 20 − 1 = 0 internal
nodes in the subtree.
Now assume true for height h, look at x with height h + 1.
If x is a leaf, then bh(x) = 0, so claim is true.
Otherwise, x has two children y and z, with bh(y) and bh(z) both either
bh(x) or bh(x)− 1.
Since height of y and z less than x , inductive hypothesis implies the
subtrees rooted at y and z each have at least 2bh(x)−1 − 1 internal nodes.
So subtree rooted at x has at least

1 +
(

2bh(x)−1 − 1
)
+
(

2bh(x)−1 − 1
)
= 2bh(x) − 1

internal nodes, finishing the induction.
David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 15 / 25



Height
The height of a red-black tree with n internal nodes is O(log n).

Let us prove this using the claim we just proved: The subtree rooted at a
node x has at least 2bh(x) − 1 internal nodes.
What x should we take?
If x is the root, we have:

n ≥ 2bh(x) − 1.

Remember we assumed that in a red-black tree, if a node is red, both its
children are colored black.
How does this help?
We know that bh(x) is at least half the height of x , so

n + 1 ≥ 2height(x)/2,

implying
height(x) ≤ 2 log2(n + 1) = O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 16 / 25



Height
The height of a red-black tree with n internal nodes is O(log n).

Let us prove this using the claim we just proved: The subtree rooted at a
node x has at least 2bh(x) − 1 internal nodes.

What x should we take?
If x is the root, we have:

n ≥ 2bh(x) − 1.

Remember we assumed that in a red-black tree, if a node is red, both its
children are colored black.
How does this help?
We know that bh(x) is at least half the height of x , so

n + 1 ≥ 2height(x)/2,

implying
height(x) ≤ 2 log2(n + 1) = O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 16 / 25



Height
The height of a red-black tree with n internal nodes is O(log n).

Let us prove this using the claim we just proved: The subtree rooted at a
node x has at least 2bh(x) − 1 internal nodes.
What x should we take?

If x is the root, we have:
n ≥ 2bh(x) − 1.

Remember we assumed that in a red-black tree, if a node is red, both its
children are colored black.
How does this help?
We know that bh(x) is at least half the height of x , so

n + 1 ≥ 2height(x)/2,

implying
height(x) ≤ 2 log2(n + 1) = O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 16 / 25



Height
The height of a red-black tree with n internal nodes is O(log n).

Let us prove this using the claim we just proved: The subtree rooted at a
node x has at least 2bh(x) − 1 internal nodes.
What x should we take?
If x is the root, we have:

n ≥ 2bh(x) − 1.

Remember we assumed that in a red-black tree, if a node is red, both its
children are colored black.
How does this help?
We know that bh(x) is at least half the height of x , so

n + 1 ≥ 2height(x)/2,

implying
height(x) ≤ 2 log2(n + 1) = O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 16 / 25



Height
The height of a red-black tree with n internal nodes is O(log n).

Let us prove this using the claim we just proved: The subtree rooted at a
node x has at least 2bh(x) − 1 internal nodes.
What x should we take?
If x is the root, we have:

n ≥ 2bh(x) − 1.

Remember we assumed that in a red-black tree, if a node is red, both its
children are colored black.

How does this help?
We know that bh(x) is at least half the height of x , so

n + 1 ≥ 2height(x)/2,

implying
height(x) ≤ 2 log2(n + 1) = O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 16 / 25



Height
The height of a red-black tree with n internal nodes is O(log n).

Let us prove this using the claim we just proved: The subtree rooted at a
node x has at least 2bh(x) − 1 internal nodes.
What x should we take?
If x is the root, we have:

n ≥ 2bh(x) − 1.

Remember we assumed that in a red-black tree, if a node is red, both its
children are colored black.
How does this help?

We know that bh(x) is at least half the height of x , so

n + 1 ≥ 2height(x)/2,

implying
height(x) ≤ 2 log2(n + 1) = O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 16 / 25



Height
The height of a red-black tree with n internal nodes is O(log n).

Let us prove this using the claim we just proved: The subtree rooted at a
node x has at least 2bh(x) − 1 internal nodes.
What x should we take?
If x is the root, we have:

n ≥ 2bh(x) − 1.

Remember we assumed that in a red-black tree, if a node is red, both its
children are colored black.
How does this help?
We know that bh(x) is at least half the height of x , so

n + 1 ≥ 2height(x)/2,

implying
height(x) ≤ 2 log2(n + 1) = O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 16 / 25



Tree operations

Last time, we looked at the tree operations Search, Maximum, Minimum,
Successor, Predecessor, Insert, and Delete.
Which ones require special attention for a red-black tree?
Search, Maximum, Minimum, Successor, and Predecessor all work
normally since they don’t change the tree – a red-black tree is a binary
search tree, just with additional information.
So all these operations run naturally in time O(log n).
Insert and Delete must be changed so the red/black conditions work.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 17 / 25



Tree operations

Last time, we looked at the tree operations Search, Maximum, Minimum,
Successor, Predecessor, Insert, and Delete.

Which ones require special attention for a red-black tree?
Search, Maximum, Minimum, Successor, and Predecessor all work
normally since they don’t change the tree – a red-black tree is a binary
search tree, just with additional information.
So all these operations run naturally in time O(log n).
Insert and Delete must be changed so the red/black conditions work.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 17 / 25



Tree operations

Last time, we looked at the tree operations Search, Maximum, Minimum,
Successor, Predecessor, Insert, and Delete.
Which ones require special attention for a red-black tree?

Search, Maximum, Minimum, Successor, and Predecessor all work
normally since they don’t change the tree – a red-black tree is a binary
search tree, just with additional information.
So all these operations run naturally in time O(log n).
Insert and Delete must be changed so the red/black conditions work.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 17 / 25



Tree operations

Last time, we looked at the tree operations Search, Maximum, Minimum,
Successor, Predecessor, Insert, and Delete.
Which ones require special attention for a red-black tree?
Search, Maximum, Minimum, Successor, and Predecessor all work
normally since they don’t change the tree – a red-black tree is a binary
search tree, just with additional information.

So all these operations run naturally in time O(log n).
Insert and Delete must be changed so the red/black conditions work.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 17 / 25



Tree operations

Last time, we looked at the tree operations Search, Maximum, Minimum,
Successor, Predecessor, Insert, and Delete.
Which ones require special attention for a red-black tree?
Search, Maximum, Minimum, Successor, and Predecessor all work
normally since they don’t change the tree – a red-black tree is a binary
search tree, just with additional information.
So all these operations run naturally in time O(log n).

Insert and Delete must be changed so the red/black conditions work.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 17 / 25



Tree operations

Last time, we looked at the tree operations Search, Maximum, Minimum,
Successor, Predecessor, Insert, and Delete.
Which ones require special attention for a red-black tree?
Search, Maximum, Minimum, Successor, and Predecessor all work
normally since they don’t change the tree – a red-black tree is a binary
search tree, just with additional information.
So all these operations run naturally in time O(log n).
Insert and Delete must be changed so the red/black conditions work.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 17 / 25



Rotations

We will use the following operations, called left rotation and right rotation:

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 18 / 25



Rotations

We will use the following operations, called left rotation and right rotation:

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 18 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black.

Might be false if we added the root.

All the leaves are black.

Still true.

Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.

First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black.

Might be false if we added the root.

All the leaves are black.

Still true.

Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.

Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black.

Might be false if we added the root.

All the leaves are black.

Still true.

Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.

Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black.

Might be false if we added the root.

All the leaves are black.

Still true.

Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.

Which of these red-black tree conditions might be violated?
The root is black.

Might be false if we added the root.

All the leaves are black.

Still true.

Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black.

Might be false if we added the root.

All the leaves are black.

Still true.

Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black. Might be false if we added the root.
All the leaves are black.

Still true.

Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black. Might be false if we added the root.
All the leaves are black. Still true.
Both children of a red node are colored black.

Might be false if parent is red.

For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black. Might be false if we added the root.
All the leaves are black. Still true.
Both children of a red node are colored black. Might be false if parent is red.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

Let’s remember our procedure from last time: Run Search on the key we
want to insert and add it at a leaf.
First minor difference we need: since the leaves of a red-black tree store
NIL, we add the key and make two new leaves for its children.
Big difference: working out the colors.
Let’s start by doing a normal Insert with the new node colored red.
Which of these red-black tree conditions might be violated?

The root is black. Might be false if we added the root.
All the leaves are black. Still true.
Both children of a red node are colored black. Might be false if parent is red.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes. Still true.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 19 / 25



Insert

We insert a new node as before and color it red.
If the node is the root, then we simply recolor it black.
What if the parent of the new node is red?
In that situation, define the uncle of the new node to be the other child of
its parent’s parent.
Case 1. The uncle of the new node is red.
Case 2. The uncle is colored black, and the new node is a right child.
Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert

We insert a new node as before and color it red.

If the node is the root, then we simply recolor it black.
What if the parent of the new node is red?
In that situation, define the uncle of the new node to be the other child of
its parent’s parent.
Case 1. The uncle of the new node is red.
Case 2. The uncle is colored black, and the new node is a right child.
Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert

We insert a new node as before and color it red.
If the node is the root, then we simply recolor it black.

What if the parent of the new node is red?
In that situation, define the uncle of the new node to be the other child of
its parent’s parent.
Case 1. The uncle of the new node is red.
Case 2. The uncle is colored black, and the new node is a right child.
Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert

We insert a new node as before and color it red.
If the node is the root, then we simply recolor it black.
What if the parent of the new node is red?

In that situation, define the uncle of the new node to be the other child of
its parent’s parent.
Case 1. The uncle of the new node is red.
Case 2. The uncle is colored black, and the new node is a right child.
Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert

We insert a new node as before and color it red.
If the node is the root, then we simply recolor it black.
What if the parent of the new node is red?
In that situation, define the uncle of the new node to be the other child of
its parent’s parent.

Case 1. The uncle of the new node is red.
Case 2. The uncle is colored black, and the new node is a right child.
Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert

We insert a new node as before and color it red.
If the node is the root, then we simply recolor it black.
What if the parent of the new node is red?
In that situation, define the uncle of the new node to be the other child of
its parent’s parent.
Case 1. The uncle of the new node is red.

Case 2. The uncle is colored black, and the new node is a right child.
Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert

We insert a new node as before and color it red.
If the node is the root, then we simply recolor it black.
What if the parent of the new node is red?
In that situation, define the uncle of the new node to be the other child of
its parent’s parent.
Case 1. The uncle of the new node is red.
Case 2. The uncle is colored black, and the new node is a right child.

Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert

We insert a new node as before and color it red.
If the node is the root, then we simply recolor it black.
What if the parent of the new node is red?
In that situation, define the uncle of the new node to be the other child of
its parent’s parent.
Case 1. The uncle of the new node is red.
Case 2. The uncle is colored black, and the new node is a right child.
Case 3. The uncle is colored black, and the new node is a left child.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 20 / 25



Insert
Case 1. The uncle of the new node is red.

We swap colors as shown.
Can check doesn’t lead to any new violations.
Except that the grandparent may now be a red violation if its own parent
is red – in that case, we can recursively repeat the correction process we
are now doing.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 21 / 25



Insert
Case 1. The uncle of the new node is red.

We swap colors as shown.

Can check doesn’t lead to any new violations.
Except that the grandparent may now be a red violation if its own parent
is red – in that case, we can recursively repeat the correction process we
are now doing.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 21 / 25



Insert
Case 1. The uncle of the new node is red.

We swap colors as shown.
Can check doesn’t lead to any new violations.

Except that the grandparent may now be a red violation if its own parent
is red – in that case, we can recursively repeat the correction process we
are now doing.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 21 / 25



Insert
Case 1. The uncle of the new node is red.

We swap colors as shown.
Can check doesn’t lead to any new violations.
Except that the grandparent may now be a red violation if its own parent
is red – in that case, we can recursively repeat the correction process we
are now doing.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 21 / 25



Insert
Case 2. The uncle is colored black, and the new node is a right child.

We run a left rotation on the parent to reduce to the next case, case 3.

Case 3. The uncle is colored black, and the new node is a left child.

We run a right rotation on the grandparent, and then swap the colors of
the parent and grandparent.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 22 / 25



Insert
Case 2. The uncle is colored black, and the new node is a right child.

We run a left rotation on the parent to reduce to the next case, case 3.

Case 3. The uncle is colored black, and the new node is a left child.

We run a right rotation on the grandparent, and then swap the colors of
the parent and grandparent.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 22 / 25



Insert
Case 2. The uncle is colored black, and the new node is a right child.

We run a left rotation on the parent to reduce to the next case, case 3.

Case 3. The uncle is colored black, and the new node is a left child.

We run a right rotation on the grandparent, and then swap the colors of
the parent and grandparent.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 22 / 25



Insert
Case 2. The uncle is colored black, and the new node is a right child.

We run a left rotation on the parent to reduce to the next case, case 3.

Case 3. The uncle is colored black, and the new node is a left child.

We run a right rotation on the grandparent, and then swap the colors of
the parent and grandparent.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 22 / 25



Insert summary

Red-black conditions:
The root is black.
Both children of a red node are colored black.
For each node, all paths from the node to the descendant leaves have the
same number of black nodes.

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 23 / 25



Delete

Delete in a red-black tree is a bit more complicated.
But there is a way to do it in O(log n) time.
So all our operations on a red-black tree run in time O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 24 / 25



Delete

Delete in a red-black tree is a bit more complicated.

But there is a way to do it in O(log n) time.
So all our operations on a red-black tree run in time O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 24 / 25



Delete

Delete in a red-black tree is a bit more complicated.
But there is a way to do it in O(log n) time.

So all our operations on a red-black tree run in time O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 24 / 25



Delete

Delete in a red-black tree is a bit more complicated.
But there is a way to do it in O(log n) time.
So all our operations on a red-black tree run in time O(log n).

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 24 / 25



Next time!

Hashing

David Rolnick COMP 761: Binary Search Trees II Nov 11, 2020 25 / 25


