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Problem

Suppose we have integers ki # ko, a prime number p, and integers a, b with a
not divisible by p. Define the remainders mod p:

ri = (aki +b) mod p
r, = (ake + b) mod p.

Prove that ry # r», and that it is possible to solve for a and b modulo p given
p, Iz, k17k2-

(Please don’t post your ideas in the chat just yet, we’ll discuss the problem
soon in class.)
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Course Announcements

@ Problem 3 — you can assume that you know the max flow already. (If you
didn’t know the max flow, the algorithm might take longer than |E| steps.)
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Arrays

@ An array is a way of storing information in memory.
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memory where things can be stored.
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n for any k.
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Arrays

@ An array is a way of storing information in memory.

@ Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.

@ An array has random access — that is, you can easily look at spot k out of
n for any k.

@ Inserting at the end of an array is easy — until you exceed the allocated
space.
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Arrays

@ An array is a way of storing information in memory.

@ Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.

@ An array has random access — that is, you can easily look at spot k out of
n for any k.

@ Inserting at the end of an array is easy — until you exceed the allocated
space.

@ Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).
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Arrays

@ An array is a way of storing information in memory.

@ Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.

@ An array has random access — that is, you can easily look at spot k out of
n for any k.

@ Inserting at the end of an array is easy — until you exceed the allocated
space.

@ Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).

@ Similarly, deletion is a pain.
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Linked lists

@ A linked list makes insertion and deletion easier, but loses random
access.
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@ A linked list makes insertion and deletion easier, but loses random
access.

@ Each element includes a pointer to the next element of the linked list.
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Linked lists

@ A linked list makes insertion and deletion easier, but loses random

access.

@ Each element includes a pointer to the next element of the linked list.
@ In a doubly linked list it also includes a pointer to the previous element.

prev key  next

\ |
@  Lohead —>{/]9] | [16] ] L[4 L1]/]
) Loead —{/[25] T [o] T fie] L[4 T [1]/]
©  L.ead —|/|25] ] [o] 7 L 16 L [1]/]
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Linked lists

@ A linked list makes insertion and deletion easier, but loses random

access.

@ Each element includes a pointer to the next element of the linked list.
@ In a doubly linked list it also includes a pointer to the previous element.

prev key  next
N
@  Lohead —>{/]9] 1L [16] J— [4] T [1]/]
) Loead —{/[25] T [o] T fie] L[4 T [1]/]
©  L.ead —|/|25] ] [o] 7 L Jis L [1]/]

@ So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.
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Linked lists

@ A linked list makes insertion and deletion easier, but loses random
access.

@ Each element includes a pointer to the next element of the linked list.
@ In a doubly linked list it also includes a pointer to the previous element.

prev key  next

|7
@  Lohead —>{/]9] 1L [16] J— [4] T [1]/]

) Loead —{/[25] T [o] T fie] L[4 T [1]/]

©  L.ead —|/|25] ] [o] 7 L Jis L [1]/]

@ So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.

@ Getting the mth element takes O(m) time.
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Linked lists

@ A linked list makes insertion and deletion easier, but loses random
access.

@ Each element includes a pointer to the next element of the linked list.
@ In a doubly linked list it also includes a pointer to the previous element.

prev key  next

|7
@  Lohead —>{/]9] 1L [16] J— [4] T [1]/]

) Loead —{/[25] T [o] T fie] L[4 T [1]/]

©  L.ead —|/|25] ] [o] 7 L Jis L [1]/]

@ So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.

@ Getting the mth element takes O(m) time.

@ But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.
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Direct addressing

@ Sometimes, we will want to store information associated to a given key.
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Direct addressing

@ Sometimes, we will want to store information associated to a given key.

@ For example, the key might be a person’s username, and the information
might be their records.
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Direct addressing

@ Sometimes, we will want to store information associated to a given key.

@ For example, the key might be a person’s username, and the information

might be their records.

@ One way to do this is direct addressing, using the key as the exact pointer

to the records.
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Direct addressing

@ Sometimes, we will want to store information associated to a given key.

@ For example, the key might be a person’s username, and the information

might be their records.

@ One way to do this is direct addressing, using the key as the exact pointer

to the records.

(universe of keys)
0 6

9e

(actual
keys)

@ What's a potential problem with this?
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Direct addressing

@ Sometimes, we will want to store information associated to a given key.

@ For example, the key might be a person’s username, and the information
might be their records.

@ One way to do this is direct addressing, using the key as the exact pointer

to the records.

(universe of keys)
0 6

20 40 70

(actual
keys) 3

@ What's a potential problem with this?
@ There might be a lot of possible usernames.
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Direct addressing

@ Sometimes, we will want to store information associated to a given key.

@ For example, the key might be a person’s username, and the information
might be their records.

@ One way to do this is direct addressing, using the key as the exact pointer
to the records.

~

(universe of keys)
0 6

OlS} 7e

(actual
keys) 8

\\\ | \\\\\ | \\\ | \ | \\\\

@ What's a potential problem with this?
@ There might be a lot of possible usernames.

@ Would need a huge amount of memory and most of the slots would be
unused.
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Hashing

@ In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
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Hashing

@ In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
@ The output h(k) is the address for the info stored for k.
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Hashing

@ In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.

@ The output h(k) is the address for the info stored for k.

@ Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k.
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Hashing

@ In hashing, there is a function h that takes possible keys k

(e.g. usernames) as input.

@ The output h(k) is the address for the info stored for k.
@ Typically, number of possibilities for h(k) is much smaller than number of

possibilities for k.
@ This is called a hash table.

U

(universe of keys)

@ What's a potential problem with this?
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Hashing

@ In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.

@ The output h(k) is the address for the info stored for k.

@ Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k.

@ This is called a hash table.

0

U
(universe of keys)

h(ky)
hky)

hks) = hks)

h(ks)

m-1

@ What's a potential problem with this?
@ We could have ki and k, where h(ky) = h(kz) — which gets stored there?
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Hashing

@ In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.

@ The output h(k) is the address for the info stored for k.

@ Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k.

@ This is called a hash table.

0

U
(universe of keys)

hky)
h(ky)

hks) = hks)

h(ks)

m-1

@ What's a potential problem with this?
@ We could have ki and k, where h(ky) = h(kz) — which gets stored there?
@ This is called a collision.
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Collisions

@ One way to try to fix this: Store a linked list at each spot.
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Collisions

@ One way to try to fix this: Store a linked list at each spot.
@ First thing inserted there (key ki) initializes the list.
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Collisions

@ One way to try to fix this: Store a linked list at each spot.
@ First thing inserted there (key ki) initializes the list.
@ If h(kz) = h(k1), then add a new entry for k> to the start of the list.
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Collisions

@ One way to try to fix this: Store a linked list at each spot.

@ First thing inserted there (key ki) initializes the list.
@ If h(kz) = h(k1), then add a new entry for k> to the start of the list.

@ This is called chaining within the hash table.

— k] 3 sl

(universe of keys)

N P~ =S 17

—{/[kl/]
>/ Tks] T &[]

\“\‘\\\‘\”

@ Hopefully none of the lists gets very long, since finding something within
a linked list is slow.
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Analysis
@ Let’s work with the assumption of simple uniform hashing, that is, the

keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
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Analysis

@ Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.

@ We therefore have equal probabilities Pr(h(k) = x) for all x.
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Analysis

@ Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.

@ We therefore have equal probabilities Pr(h(k) = x) for all x.

@ If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?

@ The expected number in each of the m slots is n/m.
@ We write o = n/m, and call it the load factor.

@ If we are given a new key k, what is the expected time it takes to search
to see if k is in the hash table?

@ We will have to go through one of the slots to see if it is there.
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Analysis

@ Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.

@ We therefore have equal probabilities Pr(h(k) = x) for all x.

@ If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?

@ The expected number in each of the m slots is n/m.
@ We write o = n/m, and call it the load factor.

@ If we are given a new key k, what is the expected time it takes to search
to see if k is in the hash table?

@ We will have to go through one of the slots to see if it is there.

@ Let’s break into two cases, depending on whether it’s in the table already
or not.
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Analysis

If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

David Rolnick COMP 761: Hashing Nov 13, 2020 10/30



Analysis

If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ First, let’s suppose that k is actually not in the hash table.

David Rolnick COMP 761: Hashing Nov 13, 2020 10/30



Analysis
If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ First, let’s suppose that k is actually not in the hash table.

@ We have to take ©(1) time to compute h(k) and access the slot.

@ ltis equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).
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Analysis
If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ First, let’s suppose that k is actually not in the hash table.

@ We have to take ©(1) time to compute h(k) and access the slot.

@ ltis equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).

@ The expected time is therefore:

m

1 . . .

Eftotal time] = ©(1) + » | —[Etime searching slot 1
i=1
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@ First, let’s suppose that k is actually not in the hash table.

@ We have to take ©(1) time to compute h(k) and access the slot.

@ ltis equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).

@ The expected time is therefore:
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Analysis
If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ First, let’s suppose that k is actually not in the hash table.

@ We have to take ©(1) time to compute h(k) and access the slot.

@ ltis equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).

@ The expected time is therefore:

m
Eftotal time] = ©(1) + » | %E[time searching slot /]
i=1

= @(1)+Z%O(a)
i=1

=0(1) + 6(a)

=0(1 + «),

where we write 1 + « since we don’t know if & = n/m is bigger or less
than 1.
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Analysis

If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?
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see if k is in the hash table?

@ Now, let’s suppose that k is in the hash table.
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Analysis

If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ Now, let’s suppose that k is in the hash table.

@ We assume it is equally likely to be any one of the keys in the table.
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Analysis
If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ Now, let’s suppose that k is in the hash table.

@ We assume it is equally likely to be any one of the keys in the table.

@ The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
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@ Now, let’s suppose that k is in the hash table.

@ We assume it is equally likely to be any one of the keys in the table.

@ The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).

@ Suppose that the hash table was created by inserting ki, ko, . . . , kn in that
order.
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Analysis
If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ Now, let’s suppose that k is in the hash table.

@ We assume it is equally likely to be any one of the keys in the table.

@ The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).

@ Suppose that the hash table was created by inserting ki, ko, . . . , kn in that
order.

@ k might be any of these with equal probability.
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Analysis
If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ Now, let’s suppose that k is in the hash table.

@ We assume it is equally likely to be any one of the keys in the table.

@ The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).

@ Suppose that the hash table was created by inserting k1, ko, . . ., kn in that
order.

@ k might be any of these with equal probability.
@ Let Xj be the indicator variable that h(k;) = h(k;).
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If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ Now, let’s suppose that k is in the hash table.

@ We assume it is equally likely to be any one of the keys in the table.

@ The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).

@ Suppose that the hash table was created by inserting k1, ko, . . ., kn in that
order.

@ k might be any of these with equal probability.
@ Let Xj be the indicator variable that h(k;) = h(k;).
@ What is the expected value of the position of k; within its slot?
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Analysis
If we are given a new key k, what is the expected time it takes to search to
see if k is in the hash table?

@ Now, let’s suppose that k is in the hash table.

@ We assume it is equally likely to be any one of the keys in the table.

@ The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).

@ Suppose that the hash table was created by inserting k1, ko, . . ., kn in that
order.

@ k might be any of these with equal probability.
@ Let Xj be the indicator variable that h(k;) = h(k;).
@ What is the expected value of the position of k; within its slot?

@ The expected position is 1 plus the expected number of elements
inserted after we inserted k;:

n
> X

j=it1

1+E

David Rolnick COMP 761: Hashing Nov 13, 2020 11/30



Analysis

David Rolnick COMP 761: Hashing Nov 13, 2020 12/30



Analysis

@ The expected position of k; in its slot is:

n
> Xi

J=i+1

1+E
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Analysis

@ The expected position of k; in its slot is:

n
> Xl

J=i+1

1+E

@ Since k could be any k; with equal probability, the expected position of k
in its slot is:

1o "
SO (THE DX
i=1

j=i+1
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Analysis

@ The expected position of k; in its slot is:

n
> Xl

J=i+1

1+E

@ Since k could be any k; with equal probability, the expected position of k
in its slot is:

1o "
SO (THE DX
i=1

j=i+1

>=1+;ZZE[X,-,-1

i=1 j=i+1
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Analysis

@ The expected position of k; in its slot is:

1+E

n
> Xi

J=i+1

@ Since k could be any k; with equal probability, the expected position of k
in its slot is:

Z Xi

j=i+1

Z(1+E

R
i=1 j=i+1
1N 1

=122 > 5

i=1 j=i+1
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Analysis

@ The expected position of k; in its slot is:

1+E

n
> Xi

J=i+1

@ Since k could be any k; with equal probability, the expected position of k
in its slot is:

Z Xi

j=i+1

Z(1+E

R

i=1 j=i+1

n

=14 - ZZ —1+—Z(n—i)

i=1 j=i+1 i=1
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Analysis

@ The expected position of k; in its slot is:

n
> Xi

J=i+1

1+E

@ Since k could be any k; with equal probability, the expected position of k
in its slot is:

Z(1+IE ZX,,

R

j=i+1 i=1 j=i+1
n
=14 - ZZ —1+—Z(n—/)
l1]l+1 i=
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Analysis

@ The expected position of k; in its slot is:

n
> Xl

J=i+1

1+E

@ Since k could be any k; with equal probability, the expected position of k
in its slot is:

Z(1+IE ZX,,

>=1+;ZZE[X,-,-1

j=i+1 i=1 j=i+1
n
SRR D I) DESSRITY SRy
l1]l+1 i=1
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Analysis

@ The expected position of k; in its slot is:

n
> Xl

J=i+1

1+E

@ Since k could be any k; with equal probability, the expected position of k
in its slot is:

Z(1+E ZX,,

j=i+1

R

i=1 j=i+1

=14 (- (-2 + 1)

_ 1 (n—1)(n)\ _ n—1
”*%(T)—”W

@ Since n/m = q, this is ©(1 + «), so the total time to search for k
(including ©(1) for computing h(k)) is ©(1) + ©(1 + o) = ©(1 + «).
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Simple hashing methods

@ If we know that keys k are real numbers with the uniform distribution on
the interval [0, 1], can do:
h(k) = |km],

where | x| is the floor function that rounds down to the nearest integer.
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Simple hashing methods

@ If we know that keys k are real numbers with the uniform distribution on
the interval [0, 1], can do:
h(k) = |km],
where | x| is the floor function that rounds down to the nearest integer.
@ This gives equal probability of h(k) =0,1,...,m—1.
@ If k are integers, we can use residues modulo m:

h(k) =k (mod m).

@ This gives again h(k) =0,1,..., m— 1, though need to know that keys
are equally likely to have different residues.

@ In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 25 have patterns for certain data.
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Simple hashing methods

@ If we know that keys k are real numbers with the uniform distribution on
the interval [0, 1], can do:
h(k) = |km],
where | x| is the floor function that rounds down to the nearest integer.
@ This gives equal probability of h(k) =0,1,...,m—1.
@ If k are integers, we can use residues modulo m:

h(k) =k (mod m).

@ This gives again h(k) =0,1,..., m— 1, though need to know that keys
are equally likely to have different residues.

@ In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 25 have patterns for certain data.

@ A prime number mis often good.
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Universal hashing

@ We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
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@ We have a problem if an adversary gets to pick the keys for either of the
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@ In universal hashing, the hash function itself is picked randomly to avoid
this.

@ Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
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this.

@ Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.

@ It's basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
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@ We have a problem if an adversary gets to pick the keys for either of the
above hash functions.

@ Can make them all collide very easily.

@ In universal hashing, the hash function itself is picked randomly to avoid
this.

@ Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.

@ It's basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.

@ Formally, let H be a set of possible hash functions, from which we pick an
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Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.

@ Can make them all collide very easily.
@ In universal hashing, the hash function itself is picked randomly to avoid

this.

Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.

It's basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.

Formally, let  be a set of possible hash functions, from which we pick an
h at random.

We say that H is universal if for any two different keys ki, k», the
probability of picking h with h(ki) = h(kz) is at most 1/m.
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@ Assume that keys are integers in a specified range.

@ Pick a prime p so every kisintherangeOto p — 1.

@ Since we assume more keys than slots, we have p > m.

David Rolnick COMP 761: Hashing Nov 13, 2020 15/30



Universal hashing

@ Let’s look at one way to design a universal set of hash functions.

@ Assume that keys are integers in a specified range.

@ Pick a prime p so every kisintherangeOto p — 1.

@ Since we assume more keys than slots, we have p > m.

@ Foreveryae {1,2,...,p—1}and be {0,1,2,...,p — 1}, we define:

hap(k) = ((ak + b) mod p) mod m.
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Universal hashing

@ Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.

Pick a prime p so every k is in the range 0 to p — 1.

Since we assume more keys than slots, we have p > m.
Foreveryae {1,2,...,p—1}and be {0,1,2,...,p — 1}, we define:

hap(k) = ((ak + b) mod p) mod m.

How many choices of hy, are there?
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Universal hashing

@ Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.

Pick a prime p so every k is in the range 0 to p — 1.

Since we assume more keys than slots, we have p > m.
Foreveryae {1,2,...,p—1}and be {0,1,2,...,p — 1}, we define:

hap(k) = ((ak + b) mod p) mod m.

@ How many choices of h,, are there?
@ p — 1 choices for aand p for b, so p(p — 1) choices for hgp,.
@ We will prove that this set of hash functions is universal.
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