
COMP 761: Lecture 30 – Hashing

David Rolnick

November 13, 2020

David Rolnick COMP 761: Hashing Nov 13, 2020 1 / 30

Problem
Suppose we have integers k1 6= k2, a prime number p, and integers a,b with a
not divisible by p. Define the remainders mod p:

r1 = (ak1 + b) mod p
r2 = (ak2 + b) mod p.

Prove that r1 6= r2, and that it is possible to solve for a and b modulo p given
p, r1, r2, k1, k2.

(Please don’t post your ideas in the chat just yet, we’ll discuss the problem
soon in class.)

David Rolnick COMP 761: Hashing Nov 13, 2020 2 / 30

Course Announcements

Problem 3 – you can assume that you know the max flow already. (If you
didn’t know the max flow, the algorithm might take longer than |E | steps.)

David Rolnick COMP 761: Hashing Nov 13, 2020 3 / 30

Course Announcements

Problem 3 – you can assume that you know the max flow already. (If you
didn’t know the max flow, the algorithm might take longer than |E | steps.)

David Rolnick COMP 761: Hashing Nov 13, 2020 3 / 30

Arrays

An array is a way of storing information in memory.
Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.
An array has random access – that is, you can easily look at spot k out of
n for any k .
Inserting at the end of an array is easy – until you exceed the allocated
space.
Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).
Similarly, deletion is a pain.

David Rolnick COMP 761: Hashing Nov 13, 2020 4 / 30

Arrays

An array is a way of storing information in memory.

Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.
An array has random access – that is, you can easily look at spot k out of
n for any k .
Inserting at the end of an array is easy – until you exceed the allocated
space.
Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).
Similarly, deletion is a pain.

David Rolnick COMP 761: Hashing Nov 13, 2020 4 / 30

Arrays

An array is a way of storing information in memory.
Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.

An array has random access – that is, you can easily look at spot k out of
n for any k .
Inserting at the end of an array is easy – until you exceed the allocated
space.
Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).
Similarly, deletion is a pain.

David Rolnick COMP 761: Hashing Nov 13, 2020 4 / 30

Arrays

An array is a way of storing information in memory.
Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.
An array has random access – that is, you can easily look at spot k out of
n for any k .

Inserting at the end of an array is easy – until you exceed the allocated
space.
Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).
Similarly, deletion is a pain.

David Rolnick COMP 761: Hashing Nov 13, 2020 4 / 30

Arrays

An array is a way of storing information in memory.
Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.
An array has random access – that is, you can easily look at spot k out of
n for any k .
Inserting at the end of an array is easy – until you exceed the allocated
space.

Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).
Similarly, deletion is a pain.

David Rolnick COMP 761: Hashing Nov 13, 2020 4 / 30

Arrays

An array is a way of storing information in memory.
Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.
An array has random access – that is, you can easily look at spot k out of
n for any k .
Inserting at the end of an array is easy – until you exceed the allocated
space.
Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).

Similarly, deletion is a pain.

David Rolnick COMP 761: Hashing Nov 13, 2020 4 / 30

Arrays

An array is a way of storing information in memory.
Creating an array with a certain length n specifies a block of n spots in
memory where things can be stored.
An array has random access – that is, you can easily look at spot k out of
n for any k .
Inserting at the end of an array is easy – until you exceed the allocated
space.
Inserting at the beginning/middle of an array is a pain, requires shifting
everything afterwards (time complexity can be O(n)).
Similarly, deletion is a pain.

David Rolnick COMP 761: Hashing Nov 13, 2020 4 / 30

Linked lists

A linked list makes insertion and deletion easier, but loses random
access.
Each element includes a pointer to the next element of the linked list.
In a doubly linked list it also includes a pointer to the previous element.

So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.
Getting the mth element takes O(m) time.
But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.

David Rolnick COMP 761: Hashing Nov 13, 2020 5 / 30

Linked lists

A linked list makes insertion and deletion easier, but loses random
access.

Each element includes a pointer to the next element of the linked list.
In a doubly linked list it also includes a pointer to the previous element.

So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.
Getting the mth element takes O(m) time.
But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.

David Rolnick COMP 761: Hashing Nov 13, 2020 5 / 30

Linked lists

A linked list makes insertion and deletion easier, but loses random
access.
Each element includes a pointer to the next element of the linked list.

In a doubly linked list it also includes a pointer to the previous element.

So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.
Getting the mth element takes O(m) time.
But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.

David Rolnick COMP 761: Hashing Nov 13, 2020 5 / 30

Linked lists

A linked list makes insertion and deletion easier, but loses random
access.
Each element includes a pointer to the next element of the linked list.
In a doubly linked list it also includes a pointer to the previous element.

So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.
Getting the mth element takes O(m) time.
But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.

David Rolnick COMP 761: Hashing Nov 13, 2020 5 / 30

Linked lists

A linked list makes insertion and deletion easier, but loses random
access.
Each element includes a pointer to the next element of the linked list.
In a doubly linked list it also includes a pointer to the previous element.

So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.

Getting the mth element takes O(m) time.
But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.

David Rolnick COMP 761: Hashing Nov 13, 2020 5 / 30

Linked lists

A linked list makes insertion and deletion easier, but loses random
access.
Each element includes a pointer to the next element of the linked list.
In a doubly linked list it also includes a pointer to the previous element.

So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.
Getting the mth element takes O(m) time.

But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.

David Rolnick COMP 761: Hashing Nov 13, 2020 5 / 30

Linked lists

A linked list makes insertion and deletion easier, but loses random
access.
Each element includes a pointer to the next element of the linked list.
In a doubly linked list it also includes a pointer to the previous element.

So it is possible from any element to access the next one and previous
one (sequential access), but not to jump immediately to any element.
Getting the mth element takes O(m) time.
But insertion and deletion are O(1), just insert and rearrange the pointers
from the next and previous elements.

David Rolnick COMP 761: Hashing Nov 13, 2020 5 / 30

Direct addressing

Sometimes, we will want to store information associated to a given key.
For example, the key might be a person’s username, and the information
might be their records.
One way to do this is direct addressing, using the key as the exact pointer
to the records.

What’s a potential problem with this?
There might be a lot of possible usernames.
Would need a huge amount of memory and most of the slots would be
unused.

David Rolnick COMP 761: Hashing Nov 13, 2020 6 / 30

Direct addressing

Sometimes, we will want to store information associated to a given key.

For example, the key might be a person’s username, and the information
might be their records.
One way to do this is direct addressing, using the key as the exact pointer
to the records.

What’s a potential problem with this?
There might be a lot of possible usernames.
Would need a huge amount of memory and most of the slots would be
unused.

David Rolnick COMP 761: Hashing Nov 13, 2020 6 / 30

Direct addressing

Sometimes, we will want to store information associated to a given key.
For example, the key might be a person’s username, and the information
might be their records.

One way to do this is direct addressing, using the key as the exact pointer
to the records.

What’s a potential problem with this?
There might be a lot of possible usernames.
Would need a huge amount of memory and most of the slots would be
unused.

David Rolnick COMP 761: Hashing Nov 13, 2020 6 / 30

Direct addressing

Sometimes, we will want to store information associated to a given key.
For example, the key might be a person’s username, and the information
might be their records.
One way to do this is direct addressing, using the key as the exact pointer
to the records.

What’s a potential problem with this?
There might be a lot of possible usernames.
Would need a huge amount of memory and most of the slots would be
unused.

David Rolnick COMP 761: Hashing Nov 13, 2020 6 / 30

Direct addressing

Sometimes, we will want to store information associated to a given key.
For example, the key might be a person’s username, and the information
might be their records.
One way to do this is direct addressing, using the key as the exact pointer
to the records.

What’s a potential problem with this?

There might be a lot of possible usernames.
Would need a huge amount of memory and most of the slots would be
unused.

David Rolnick COMP 761: Hashing Nov 13, 2020 6 / 30

Direct addressing

Sometimes, we will want to store information associated to a given key.
For example, the key might be a person’s username, and the information
might be their records.
One way to do this is direct addressing, using the key as the exact pointer
to the records.

What’s a potential problem with this?
There might be a lot of possible usernames.

Would need a huge amount of memory and most of the slots would be
unused.

David Rolnick COMP 761: Hashing Nov 13, 2020 6 / 30

Direct addressing

Sometimes, we will want to store information associated to a given key.
For example, the key might be a person’s username, and the information
might be their records.
One way to do this is direct addressing, using the key as the exact pointer
to the records.

What’s a potential problem with this?
There might be a lot of possible usernames.
Would need a huge amount of memory and most of the slots would be
unused.

David Rolnick COMP 761: Hashing Nov 13, 2020 6 / 30

Hashing

In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
The output h(k) is the address for the info stored for k .
Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k .
This is called a hash table.

What’s a potential problem with this?
We could have k1 and k2 where h(k1) = h(k2) – which gets stored there?
This is called a collision.

David Rolnick COMP 761: Hashing Nov 13, 2020 7 / 30

Hashing
In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.

The output h(k) is the address for the info stored for k .
Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k .
This is called a hash table.

What’s a potential problem with this?
We could have k1 and k2 where h(k1) = h(k2) – which gets stored there?
This is called a collision.

David Rolnick COMP 761: Hashing Nov 13, 2020 7 / 30

Hashing
In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
The output h(k) is the address for the info stored for k .

Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k .
This is called a hash table.

What’s a potential problem with this?
We could have k1 and k2 where h(k1) = h(k2) – which gets stored there?
This is called a collision.

David Rolnick COMP 761: Hashing Nov 13, 2020 7 / 30

Hashing
In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
The output h(k) is the address for the info stored for k .
Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k .

This is called a hash table.

What’s a potential problem with this?
We could have k1 and k2 where h(k1) = h(k2) – which gets stored there?
This is called a collision.

David Rolnick COMP 761: Hashing Nov 13, 2020 7 / 30

Hashing
In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
The output h(k) is the address for the info stored for k .
Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k .
This is called a hash table.

What’s a potential problem with this?

We could have k1 and k2 where h(k1) = h(k2) – which gets stored there?
This is called a collision.

David Rolnick COMP 761: Hashing Nov 13, 2020 7 / 30

Hashing
In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
The output h(k) is the address for the info stored for k .
Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k .
This is called a hash table.

What’s a potential problem with this?
We could have k1 and k2 where h(k1) = h(k2) – which gets stored there?

This is called a collision.

David Rolnick COMP 761: Hashing Nov 13, 2020 7 / 30

Hashing
In hashing, there is a function h that takes possible keys k
(e.g. usernames) as input.
The output h(k) is the address for the info stored for k .
Typically, number of possibilities for h(k) is much smaller than number of
possibilities for k .
This is called a hash table.

What’s a potential problem with this?
We could have k1 and k2 where h(k1) = h(k2) – which gets stored there?
This is called a collision.

David Rolnick COMP 761: Hashing Nov 13, 2020 7 / 30

Collisions

One way to try to fix this: Store a linked list at each spot.
First thing inserted there (key k1) initializes the list.
If h(k2) = h(k1), then add a new entry for k2 to the start of the list.
This is called chaining within the hash table.

Hopefully none of the lists gets very long, since finding something within
a linked list is slow.

David Rolnick COMP 761: Hashing Nov 13, 2020 8 / 30

Collisions

One way to try to fix this: Store a linked list at each spot.

First thing inserted there (key k1) initializes the list.
If h(k2) = h(k1), then add a new entry for k2 to the start of the list.
This is called chaining within the hash table.

Hopefully none of the lists gets very long, since finding something within
a linked list is slow.

David Rolnick COMP 761: Hashing Nov 13, 2020 8 / 30

Collisions

One way to try to fix this: Store a linked list at each spot.
First thing inserted there (key k1) initializes the list.

If h(k2) = h(k1), then add a new entry for k2 to the start of the list.
This is called chaining within the hash table.

Hopefully none of the lists gets very long, since finding something within
a linked list is slow.

David Rolnick COMP 761: Hashing Nov 13, 2020 8 / 30

Collisions

One way to try to fix this: Store a linked list at each spot.
First thing inserted there (key k1) initializes the list.
If h(k2) = h(k1), then add a new entry for k2 to the start of the list.

This is called chaining within the hash table.

Hopefully none of the lists gets very long, since finding something within
a linked list is slow.

David Rolnick COMP 761: Hashing Nov 13, 2020 8 / 30

Collisions

One way to try to fix this: Store a linked list at each spot.
First thing inserted there (key k1) initializes the list.
If h(k2) = h(k1), then add a new entry for k2 to the start of the list.
This is called chaining within the hash table.

Hopefully none of the lists gets very long, since finding something within
a linked list is slow.

David Rolnick COMP 761: Hashing Nov 13, 2020 8 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.

We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .

If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?

The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.

We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.

If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?

We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.

Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis

Let’s work with the assumption of simple uniform hashing, that is, the
keys are drawn from a distribution that makes them equally likely to go in
any slot, independent of the other keys.
We therefore have equal probabilities Pr(h(k) = x) for all x .
If we are storing n keys, with m slots, what is the expected number of
keys stored in a single slot?
The expected number in each of the m slots is n/m.
We write α = n/m, and call it the load factor.
If we are given a new key k , what is the expected time it takes to search
to see if k is in the hash table?
We will have to go through one of the slots to see if it is there.
Let’s break into two cases, depending on whether it’s in the table already
or not.

David Rolnick COMP 761: Hashing Nov 13, 2020 9 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

First, let’s suppose that k is actually not in the hash table.
We have to take Θ(1) time to compute h(k) and access the slot.
It is equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).
The expected time is therefore:

E[total time] = Θ(1) +
m∑

i=1

1
m
E[time searching slot i]

= Θ(1) +
m∑

i=1

1
m

O(α)

= Θ(1) + Θ(α)

= Θ(1 + α),

where we write 1 + α since we don’t know if α = n/m is bigger or less
than 1.

David Rolnick COMP 761: Hashing Nov 13, 2020 10 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

First, let’s suppose that k is actually not in the hash table.

We have to take Θ(1) time to compute h(k) and access the slot.
It is equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).
The expected time is therefore:

E[total time] = Θ(1) +
m∑

i=1

1
m
E[time searching slot i]

= Θ(1) +
m∑

i=1

1
m

O(α)

= Θ(1) + Θ(α)

= Θ(1 + α),

where we write 1 + α since we don’t know if α = n/m is bigger or less
than 1.

David Rolnick COMP 761: Hashing Nov 13, 2020 10 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

First, let’s suppose that k is actually not in the hash table.
We have to take Θ(1) time to compute h(k) and access the slot.
It is equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).

The expected time is therefore:

E[total time] = Θ(1) +
m∑

i=1

1
m
E[time searching slot i]

= Θ(1) +
m∑

i=1

1
m

O(α)

= Θ(1) + Θ(α)

= Θ(1 + α),

where we write 1 + α since we don’t know if α = n/m is bigger or less
than 1.

David Rolnick COMP 761: Hashing Nov 13, 2020 10 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

First, let’s suppose that k is actually not in the hash table.
We have to take Θ(1) time to compute h(k) and access the slot.
It is equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).
The expected time is therefore:

E[total time] = Θ(1) +
m∑

i=1

1
m
E[time searching slot i]

= Θ(1) +
m∑

i=1

1
m

O(α)

= Θ(1) + Θ(α)

= Θ(1 + α),

where we write 1 + α since we don’t know if α = n/m is bigger or less
than 1.

David Rolnick COMP 761: Hashing Nov 13, 2020 10 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

First, let’s suppose that k is actually not in the hash table.
We have to take Θ(1) time to compute h(k) and access the slot.
It is equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).
The expected time is therefore:

E[total time] = Θ(1) +
m∑

i=1

1
m
E[time searching slot i]

= Θ(1) +
m∑

i=1

1
m

O(α)

= Θ(1) + Θ(α)

= Θ(1 + α),

where we write 1 + α since we don’t know if α = n/m is bigger or less
than 1.

David Rolnick COMP 761: Hashing Nov 13, 2020 10 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

First, let’s suppose that k is actually not in the hash table.
We have to take Θ(1) time to compute h(k) and access the slot.
It is equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).
The expected time is therefore:

E[total time] = Θ(1) +
m∑

i=1

1
m
E[time searching slot i]

= Θ(1) +
m∑

i=1

1
m

O(α)

= Θ(1) + Θ(α)

= Θ(1 + α),

where we write 1 + α since we don’t know if α = n/m is bigger or less
than 1.

David Rolnick COMP 761: Hashing Nov 13, 2020 10 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

First, let’s suppose that k is actually not in the hash table.
We have to take Θ(1) time to compute h(k) and access the slot.
It is equally likely that k is hashed to any one of the m slots (that’s the
simple uniform hashing assumption).
The expected time is therefore:

E[total time] = Θ(1) +
m∑

i=1

1
m
E[time searching slot i]

= Θ(1) +
m∑

i=1

1
m

O(α)

= Θ(1) + Θ(α)

= Θ(1 + α),

where we write 1 + α since we don’t know if α = n/m is bigger or less
than 1.

David Rolnick COMP 761: Hashing Nov 13, 2020 10 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.

We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.

The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).

Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.

k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.

Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).

What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?

The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .

David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis
If we are given a new key k , what is the expected time it takes to search to
see if k is in the hash table?

Now, let’s suppose that k is in the hash table.
We assume it is equally likely to be any one of the keys in the table.
The analysis is a bit different, since a longer list is now more likely to be
searched (since there are more keys leading to it).
Suppose that the hash table was created by inserting k1, k2, . . . , kn in that
order.
k might be any of these with equal probability.
Let Xij be the indicator variable that h(ki) = h(kj).
What is the expected value of the position of ki within its slot?
The expected position is 1 plus the expected number of elements
inserted after we inserted ki :

1 + E

 n∑
j=i+1

Xij

 .
David Rolnick COMP 761: Hashing Nov 13, 2020 11 / 30

Analysis

The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij



= 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij



= 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij



= 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij

 = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij

 = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij

 = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij

 = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij

 = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)

= 1 +
n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij

 = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Analysis
The expected position of ki in its slot is:

1 + E

 n∑
j=i+1

Xij

 .

Since k could be any ki with equal probability, the expected position of k
in its slot is:

1
n

n∑
i=1

1 + E

 n∑
j=i+1

Xij

 = 1 +
1
n

n∑
i=1

n∑
j=i+1

E[Xij]

= 1 +
1
n

n∑
i=1

n∑
j=i+1

1
m

= 1 +
1

nm

n∑
i=1

(n − i)

= 1 +
1

nm
((n − 1) + (n − 2) + . . .+ 1)

= 1 +
1

nm

(
(n − 1)(n)

2

)
= 1 +

n − 1
2m

Since n/m = α, this is Θ(1 + α), so the total time to search for k
(including Θ(1) for computing h(k)) is Θ(1) + Θ(1 + α) = Θ(1 + α).

David Rolnick COMP 761: Hashing Nov 13, 2020 12 / 30

Simple hashing methods

If we know that keys k are real numbers with the uniform distribution on
the interval [0,1], can do:

h(k) = bkmc,

where bxc is the floor function that rounds down to the nearest integer.
This gives equal probability of h(k) = 0,1, . . . ,m − 1.
If k are integers, we can use residues modulo m:

h(k) = k (mod m).

This gives again h(k) = 0,1, . . . ,m − 1, though need to know that keys
are equally likely to have different residues.
In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 2s have patterns for certain data.
A prime number m is often good.

David Rolnick COMP 761: Hashing Nov 13, 2020 13 / 30

Simple hashing methods

If we know that keys k are real numbers with the uniform distribution on
the interval [0,1], can do:

h(k) = bkmc,

where bxc is the floor function that rounds down to the nearest integer.

This gives equal probability of h(k) = 0,1, . . . ,m − 1.
If k are integers, we can use residues modulo m:

h(k) = k (mod m).

This gives again h(k) = 0,1, . . . ,m − 1, though need to know that keys
are equally likely to have different residues.
In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 2s have patterns for certain data.
A prime number m is often good.

David Rolnick COMP 761: Hashing Nov 13, 2020 13 / 30

Simple hashing methods

If we know that keys k are real numbers with the uniform distribution on
the interval [0,1], can do:

h(k) = bkmc,

where bxc is the floor function that rounds down to the nearest integer.
This gives equal probability of h(k) = 0,1, . . . ,m − 1.

If k are integers, we can use residues modulo m:

h(k) = k (mod m).

This gives again h(k) = 0,1, . . . ,m − 1, though need to know that keys
are equally likely to have different residues.
In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 2s have patterns for certain data.
A prime number m is often good.

David Rolnick COMP 761: Hashing Nov 13, 2020 13 / 30

Simple hashing methods

If we know that keys k are real numbers with the uniform distribution on
the interval [0,1], can do:

h(k) = bkmc,

where bxc is the floor function that rounds down to the nearest integer.
This gives equal probability of h(k) = 0,1, . . . ,m − 1.
If k are integers, we can use residues modulo m:

h(k) = k (mod m).

This gives again h(k) = 0,1, . . . ,m − 1, though need to know that keys
are equally likely to have different residues.
In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 2s have patterns for certain data.
A prime number m is often good.

David Rolnick COMP 761: Hashing Nov 13, 2020 13 / 30

Simple hashing methods

If we know that keys k are real numbers with the uniform distribution on
the interval [0,1], can do:

h(k) = bkmc,

where bxc is the floor function that rounds down to the nearest integer.
This gives equal probability of h(k) = 0,1, . . . ,m − 1.
If k are integers, we can use residues modulo m:

h(k) = k (mod m).

This gives again h(k) = 0,1, . . . ,m − 1, though need to know that keys
are equally likely to have different residues.

In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 2s have patterns for certain data.
A prime number m is often good.

David Rolnick COMP 761: Hashing Nov 13, 2020 13 / 30

Simple hashing methods

If we know that keys k are real numbers with the uniform distribution on
the interval [0,1], can do:

h(k) = bkmc,

where bxc is the floor function that rounds down to the nearest integer.
This gives equal probability of h(k) = 0,1, . . . ,m − 1.
If k are integers, we can use residues modulo m:

h(k) = k (mod m).

This gives again h(k) = 0,1, . . . ,m − 1, though need to know that keys
are equally likely to have different residues.
In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 2s have patterns for certain data.

A prime number m is often good.

David Rolnick COMP 761: Hashing Nov 13, 2020 13 / 30

Simple hashing methods

If we know that keys k are real numbers with the uniform distribution on
the interval [0,1], can do:

h(k) = bkmc,

where bxc is the floor function that rounds down to the nearest integer.
This gives equal probability of h(k) = 0,1, . . . ,m − 1.
If k are integers, we can use residues modulo m:

h(k) = k (mod m).

This gives again h(k) = 0,1, . . . ,m − 1, though need to know that keys
are equally likely to have different residues.
In practice, we would want to avoid certain m, in particular powers of two,
since often residues mod 2s have patterns for certain data.
A prime number m is often good.

David Rolnick COMP 761: Hashing Nov 13, 2020 13 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
Can make them all collide very easily.
In universal hashing, the hash function itself is picked randomly to avoid
this.
Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
Formally, let H be a set of possible hash functions, from which we pick an
h at random.
We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.

Can make them all collide very easily.
In universal hashing, the hash function itself is picked randomly to avoid
this.
Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
Formally, let H be a set of possible hash functions, from which we pick an
h at random.
We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
Can make them all collide very easily.

In universal hashing, the hash function itself is picked randomly to avoid
this.
Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
Formally, let H be a set of possible hash functions, from which we pick an
h at random.
We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
Can make them all collide very easily.
In universal hashing, the hash function itself is picked randomly to avoid
this.

Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
Formally, let H be a set of possible hash functions, from which we pick an
h at random.
We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
Can make them all collide very easily.
In universal hashing, the hash function itself is picked randomly to avoid
this.
Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.

It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
Formally, let H be a set of possible hash functions, from which we pick an
h at random.
We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
Can make them all collide very easily.
In universal hashing, the hash function itself is picked randomly to avoid
this.
Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.

Formally, let H be a set of possible hash functions, from which we pick an
h at random.
We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
Can make them all collide very easily.
In universal hashing, the hash function itself is picked randomly to avoid
this.
Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
Formally, let H be a set of possible hash functions, from which we pick an
h at random.

We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

We have a problem if an adversary gets to pick the keys for either of the
above hash functions.
Can make them all collide very easily.
In universal hashing, the hash function itself is picked randomly to avoid
this.
Specifically, the goal is that for any pair of keys (even not random), we are
likely to pick a hash function where they don’t collide.
It’s basically moving the randomness assumption from the keys to the
hash function, since we know we can control that.
Formally, let H be a set of possible hash functions, from which we pick an
h at random.
We say that H is universal if for any two different keys k1, k2, the
probability of picking h with h(k1) = h(k2) is at most 1/m.

David Rolnick COMP 761: Hashing Nov 13, 2020 14 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.

Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.

Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.

Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.

For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?

p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.

We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

Universal hashing

Let’s look at one way to design a universal set of hash functions.
Assume that keys are integers in a specified range.
Pick a prime p so every k is in the range 0 to p − 1.
Since we assume more keys than slots, we have p > m.
For every a ∈ {1,2, . . . ,p − 1} and b ∈ {0,1,2, . . . ,p − 1}, we define:

hab(k) = ((ak + b) mod p) mod m.

How many choices of hab are there?
p − 1 choices for a and p for b, so p(p − 1) choices for hab.
We will prove that this set of hash functions is universal.

David Rolnick COMP 761: Hashing Nov 13, 2020 15 / 30

