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Problem
For a univariate function f (x) (where x ∈ R), you can test if it’s convex by
checking if f ′′(x) ≥ 0. What should it mean for a multivariate function f (x) to
be convex, where x ∈ Rn is a vector and f (x) is a scalar?

(Please don’t post your ideas in the chat just yet, we’ll discuss the problem
soon in class.)
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Course Announcements

Office hours today right after class.
Reminder: Final two classes in the course are this Wed and Thurs.
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Review: The gradient

The gradient ∇f of a multivariable function f (x) = f (x1, . . . , xn) is the
vector of partial derivatives with respect to the variables:

∇f =
[

∂f/∂x1 · · · ∂f/∂xn

]
.

Can use gradient to estimate the amount that f changes:

f (x1 + ε1, . . . , xn + εn) ≈ f (x1, . . . , xn) + (∇f ) ·
[
ε1 · · · εn

]
.

Dot product maximized when vectors aligned, so
[
ε1 · · · εn

]
should

point along gradient (∇f ).
Likewise, greatest decrease when

[
ε1 · · · εn

]
pointing along

negative gradient (−∇f ).
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Gradient descent

In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.
Starting at some point x0 ∈ Rn, we progressively find points
x1, x2, . . . ∈ Rn by setting:

xk+1 = xk − γ∇f (xk ).

where γ > 0 is a fixed learning rate and ∇f (xk ) means the gradient of f
evaluated at xk .
Then, if γ is very small, we can use the approximation:

f (xk+1) = f (xk − γ∇f (xk ))

≈ f (xk ) + (∇f (xk )) · (−γ∇f (xk ))

= f (xk )− γ||∇f (xk )||2.

We are essentially taking a step in the direction that decreases the
function the most.
We repeat until converge to a minimum (i.e. steps become really small).
(The steps are small if ||∇f ||2 ≈ 0, which happens near the minimum.)
Can similarly do gradient ascent to find maximum: xk+1 = xk + γ∇f (xk ).
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Gradient descent failure modes

xk+1 = xk − γ∇f (xk ).

What are ways that gradient descent can fail?
There are essentially three ways that gradient descent can “fail”:

The iterative algorithm converges to the wrong point.
The algorithm doesn’t converge.
The algorithm converges, but very slowly.
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Gradient descent – failure mode 1

xk+1 = xk − γ∇f (xk ).

There are essentially three ways that gradient descent can “fail”:
The iterative algorithm converges to the wrong point – local minma.
The algorithm doesn’t converge.
The algorithm converges, but very slowly.

The first situation happens if there is a local minimum that isn’t a global
minimum – the algorithm then essentially gets stuck.
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Gradient descent – failure mode 2

xk+1 = xk − γ∇f (xk ).

There are essentially three ways that gradient descent can “fail”:
The iterative algorithm converges to the wrong point – local minma.
The algorithm doesn’t converge – unbounded function or large learning
rate
The algorithm converges, but very slowly.

The second situation happens if (i) the function isn’t bounded and can
descend forever, or (ii) the learning rate is too large and gradient descent
bounces around without settling into a minimum.

(i) (ii)

David Rolnick COMP 761: Neural Networks II Nov 30, 2020 8 / 20



Gradient descent – failure mode 2

xk+1 = xk − γ∇f (xk ).

There are essentially three ways that gradient descent can “fail”:
The iterative algorithm converges to the wrong point – local minma.
The algorithm doesn’t converge – unbounded function or large learning
rate
The algorithm converges, but very slowly.

The second situation happens if (i) the function isn’t bounded and can
descend forever, or (ii) the learning rate is too large and gradient descent
bounces around without settling into a minimum.

(i) (ii)

David Rolnick COMP 761: Neural Networks II Nov 30, 2020 8 / 20



Gradient descent – failure mode 3

xk+1 = xk − γ∇f (xk ).

There are essentially three ways that gradient descent can “fail”:
The iterative algorithm converges to the wrong point – local minma.
The algorithm doesn’t converge – unbounded function or large learning
rate
The algorithm converges, but very slowly – flat regions.

The third situation happens if the gradient moves into a “flat region”
where the gradient is very small.
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Gradient descent – preventing failures

xk+1 = xk − γ∇f (xk ).

There are essentially three ways that gradient descent can “fail”:
The iterative algorithm converges to the wrong point – local minma.
The algorithm doesn’t converge – unbounded function or large learning
rate
The algorithm converges, but very slowly – flat regions.

We are generally working with bounded functions.
We can pick a very low learning rate (or decrease it as we go).
Flat regions can be a big problem (as we will see later).
We can ignore local minima if the function is convex.
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Convex functions
For a univariate function f (x) (where x ∈ R), you can test if it’s convex by
checking if f ′′(x) ≥ 0. What should it mean for a multivariate function f (x) to
be convex, where x ∈ Rn is a vector and f (x) is a scalar?

One way to define it is to use the graph of f (x).
f is convex if for any two points x , y ∈ Rn, the segment between (x , f (x))
and (y , f (y)) never goes below the graph:

for any 0 ≤ t ≤ 1, tf (x) + (1− t)f (y) ≥ f (tx + (1− t)y).

This is a generalization of the definition of convexity we saw for univariate
functions.
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For a univariate function f (x) (where x ∈ R), you can test if it’s convex by
checking if f ′′(x) ≥ 0. What should it mean for a multivariate function f (x) to
be convex, where x ∈ Rn is a vector and f (x) is a scalar?

Another way to define convexity is to use the Hessian of f (x).
Since x = [x1, x2, . . . , xn] is a vector, we can’t just write f ′′ > 0, we have to
consider derivatives with respect to all the xi .
The Hessian of f is the matrix that captures all the possible second
derivatives:

Hf =


∂2f/∂x1∂x1

∂2f/∂x1∂x2 · · · ∂f/∂x1∂xn

∂2f/∂x2∂x1
∂2f/∂x2∂x2 · · · ∂f/∂x2∂xn

...
...

. . .
...

∂2f/∂xn∂x1
∂2f/∂xn∂x2 · · · ∂f/∂xn∂xn

 .
Let’s see how we can use that.
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For a univariate function f (x) (where x ∈ R), you can test if it’s convex by
checking if f ′′(x) ≥ 0. What should it mean for a multivariate function f (x) to
be convex, where x ∈ Rn is a vector and f (x) is a scalar?

We saw that for x ∈ R, we had the first-order (linear) approximation
f (x + ε) ≈ f (x) + εf ′(x).
And the second-order (quadratic) approximation
f (x + ε) ≈ f (x) + εf ′(x) + (ε/2)f ′′(x).
Now, if x ∈ Rn and ε is also ∈ Rn, we had the first-order approximation:

f (x + ε) ≈ f (x) + ε · ∇f (x).

What is the second-order approximation?
With a bit more algebra, we can prove that it is:

f (x + ε) ≈ f (x) + ε · ∇f (x) + (1/2)εT (Hf (x))ε.

The analogous statement to f ′′(x) ≥ 0 is that for any vector ε ∈ Rn, we
have εT (Hf (x))ε ≥ 0, which is the same as saying that Hf (x) is a positive
semi-definite matrix.
Equivalently (though we won’t prove this): Hf (x) has all eigenvalues ≥ 0.
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Gradient descent in convex functions

For a convex function f , any local minimum of f is a global minimum of f .

Informal way of seeing this: Suppose towards contradiction we have a
local minimum x and a global minimum y with f (y) < f (x).
Then, the segment between x and y has to go below the graph of f , since
x is a local minimum.
That means f can’t be convex!
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