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Problem

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

(Please don’t post your ideas in the chat just yet, we’ll discuss the problem
soon in class.)
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Course Announcements

@ Office hours today right after class.
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Course Announcements

@ Office hours today right after class.
@ Reminder: Final two classes in the course are this Wed and Thurs.
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Review: The gradient
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Review: The gradient

@ The gradient Vf of a multivariable function f(x) = f(x1, ..., X) is the
vector of partial derivatives with respect to the variables:

Vi=[ 0ox - ox, |.
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Review: The gradient

@ The gradient Vf of a multivariable function f(x) = f(x1, ..., X) is the
vector of partial derivatives with respect to the variables:

V= [ 8f/3X1 . 31‘/8)(” ] .
@ Can use gradient to estimate the amount that f changes:
f(X1—|—€1,...,Xn—‘r€n)%f(X1,...,Xn)+(Vf)-[61 En].
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Review: The gradient

@ The gradient Vf of a multivariable function f(x) = f(x1, ..., X) is the
vector of partial derivatives with respect to the variables:
V= 0ox -+ Mox, |.
@ Can use gradient to estimate the amount that f changes:
fxqi+e1,....Xn+en) = f(X1,...,%5) + (VF) - [ € -+ €p ] )
@ Dot product maximized when vectors aligned, so [ 1 --- €, | should

point along gradient (V).
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Review: The gradient

@ The gradient Vf of a multivariable function f(x) = f(x1, ..., X) is the
vector of partial derivatives with respect to the variables:

V= [ 8f/3X1 . 31‘/8)(” ] .
@ Can use gradient to estimate the amount that f changes:
f(X1—|—€1,...,Xn—‘r€n)%f(X1,...,Xn)+(Vf)-[61 En].
@ Dot product maximized when vectors aligned, so [ 1 --- €, | should
point along gradient (V).
o Likewise, greatest decreasewhen [ ¢; --- ¢, | pointing along

negative gradient (—Vf).
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Gradient descent
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Gradient descent

@ In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.
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Gradient descent

@ In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.
@ Starting at some point x° € R”, we progressively find points
x',x?,... € R" by setting:
XK = xkK v F(xF).
where v > 0 is a fixed learning rate and Vf(x¥) means the gradient of f
evaluated at x*.
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Gradient descent

@ In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.
@ Starting at some point x° € R”, we progressively find points
x',x?,... € R" by setting:
XK = xkK v F(xF).
where v > 0 is a fixed learning rate and Vf(x¥) means the gradient of f

evaluated at x*.
@ Then, if v is very small, we can use the approximation:

F(X1) = F(x* — V(X))
~ F(x¥) + (VH(X¥)) - (= VH(x¥))
= f(x) = AV F(X) 2.
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Gradient descent

@ In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.
@ Starting at some point x° € R”, we progressively find points
x',x?,... € R" by setting:
XK = xkK v F(xF).
where v > 0 is a fixed learning rate and Vf(x¥) means the gradient of f

evaluated at x*.
@ Then, if v is very small, we can use the approximation:

F(X1) = F(x* — V(X))
~ F(x¥) + (VH(X¥)) - (= VH(x¥))
= f(x) = AV F(X) 2.

@ We are essentially taking a step in the direction that decreases the
function the most.
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Gradient descent

@ In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.
@ Starting at some point x° € R”, we progressively find points
x',x?,... € R" by setting:
XK = xkK v F(xF).
where v > 0 is a fixed learning rate and Vf(x¥) means the gradient of f

evaluated at x*.
@ Then, if v is very small, we can use the approximation:

F 1) = F(x* — T H(x"))
~ F(XF) + (VX)) - (- V("))
= f(x") = 4[|V F(x)I 2.
@ We are essentially taking a step in the direction that decreases the

function the most.
@ We repeat until converge to a minimum (i.e. steps become really small).
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Gradient descent

@ In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.

@ Starting at some point x° € R”, we progressively find points
x',x?,... € R" by setting:

XK = xkK v F(xF).
where v > 0 is a fixed learning rate and Vf(x¥) means the gradient of f

evaluated at x*.
@ Then, if v is very small, we can use the approximation:

F(X) = F(X* =V H(x"))
~ F(XF) + (VX)) - (- V("))
= f(x") = 4[|V F(x)I 2.
@ We are essentially taking a step in the direction that decreases the
function the most.

@ We repeat until converge to a minimum (i.e. steps become really small).
@ (The steps are small if || Vf||> ~ 0, which happens near the minimum.)
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Gradient descent

@ In gradient descent, we use this property of the gradient to our benefit to
find the minimum of a function.
@ Starting at some point x° € R”, we progressively find points
x',x?,... € R" by setting:
XK = xkK v F(xF).

where v > 0 is a fixed learning rate and Vf(x¥) means the gradient of f
evaluated at x*.
@ Then, if v is very small, we can use the approximation:
FXT) = F(X — 4V F(XF))
~ F(XF) + (VX)) - (- V("))
= f(x") = 4[|V F(x)I 2.
@ We are essentially taking a step in the direction that decreases the
function the most.
@ We repeat until converge to a minimum (i.e. steps become really small).
@ (The steps are small if || Vf||> ~ 0, which happens near the minimum.)
@ Can similarly do gradient ascent to find maximum: xk+1 = xk 4 4V f(x¥).
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Gradient descent failure modes

XK = xK — V().
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Gradient descent failure modes
XK = xK — V().

@ What are ways that gradient descent can fail?
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Gradient descent failure modes
XK = xK — V().

@ What are ways that gradient descent can fail?
@ There are essentially three ways that gradient descent can “fail”:
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Gradient descent failure modes
XK = xK — V().

@ What are ways that gradient descent can fail?

@ There are essentially three ways that gradient descent can “fail”:
e The iterative algorithm converges to the wrong point.
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Gradient descent failure modes
XK = xK — V().

@ What are ways that gradient descent can fail?

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point.
e The algorithm doesn’t converge.
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Gradient descent failure modes
XK = xK — V().

@ What are ways that gradient descent can fail?

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point.
e The algorithm doesn’t converge.
e The algorithm converges, but very slowly.
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Gradient descent — failure mode 1
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.
e The algorithm doesn’t converge.
@ The algorithm converges, but very slowly.
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Gradient descent — failure mode 1
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.
e The algorithm doesn’t converge.
@ The algorithm converges, but very slowly.

@ The first situation happens if there is a local minimum that isn’t a global
minimum — the algorithm then essentially gets stuck.

Local minima

Global minima
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Gradient descent — failure mode 2
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:
e The iterative algorithm converges to the wrong point — local minma.
o The algorithm doesn’t converge — unbounded function or large learning
rate
e The algorithm converges, but very slowly.
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Gradient descent — failure mode 2
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.

o The algorithm doesn’t converge — unbounded function or large learning
rate

e The algorithm converges, but very slowly.

@ The second situation happens if (i) the function isn’t bounded and can
descend forever, or (ii) the learning rate is too large and gradient descent
bounces around without settling into a minimum.

Sufis Conos, i Crsent i

Big learning rate Small learning rate
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Gradient descent — failure mode 3
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:
e The iterative algorithm converges to the wrong point — local minma.
o The algorithm doesn’t converge — unbounded function or large learning
rate
e The algorithm converges, but very slowly — flat regions.
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Gradient descent — failure mode 3
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.

e The algorithm doesn’t converge — unbounded function or large learning
rate

e The algorithm converges, but very slowly — flat regions.

@ The third situation happens if the gradient moves into a “flat region”
where the gradient is very small.
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Gradient descent — preventing failures
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.

e The algorithm doesn’t converge — unbounded function or large learning
rate

e The algorithm converges, but very slowly — flat regions.

David Rolnick COMP 761: Neural Networks Il Nov 30, 2020 10/20



Gradient descent — preventing failures
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.

e The algorithm doesn’t converge — unbounded function or large learning
rate

e The algorithm converges, but very slowly — flat regions.

@ We are generally working with bounded functions.
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Gradient descent — preventing failures
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.

e The algorithm doesn’t converge — unbounded function or large learning
rate

e The algorithm converges, but very slowly — flat regions.

@ We are generally working with bounded functions.
@ We can pick a very low learning rate (or decrease it as we go).
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Gradient descent — preventing failures
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.

e The algorithm doesn’t converge — unbounded function or large learning
rate

e The algorithm converges, but very slowly — flat regions.

@ We are generally working with bounded functions.
@ We can pick a very low learning rate (or decrease it as we go).
@ Flat regions can be a big problem (as we will see later).
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Gradient descent — preventing failures
XK = xK — V().

@ There are essentially three ways that gradient descent can “fail”:

e The iterative algorithm converges to the wrong point — local minma.

e The algorithm doesn’t converge — unbounded function or large learning
rate

e The algorithm converges, but very slowly — flat regions.

@ We are generally working with bounded functions.

@ We can pick a very low learning rate (or decrease it as we go).
@ Flat regions can be a big problem (as we will see later).

@ We can ignore local minima if the function is convex.
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ One way to define it is to use the graph of f(x).
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ One way to define it is to use the graph of f(x).
@ fis convex if for any two points x, y € R", the segment between (x, f(x))
and (y, f(y)) never goes below the graph:

forany 0 <t <1, )+ (1 =0f(y) > f(tx+ (1 —t)y).
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ One way to define it is to use the graph of f(x).
@ fis convex if for any two points x, y € R", the segment between (x, f(x))
and (y, f(y)) never goes below the graph:

forany 0 <t <1, )+ (1 =0f(y) > f(tx+ (1 —t)y).

@ This is a generalization of the definition of convexity we saw for univariate
functions.
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ Another way to define convexity is to use the Hessian of f(x).
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ Another way to define convexity is to use the Hessian of f(x).

@ Since x = [xq, X2, ..., Xy] is @ vector, we can't just write f > 0, we have to
consider derivatives with respect to all the x;.
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ Another way to define convexity is to use the Hessian of f(x).

@ Since x = [xq, X2, ..., Xy] is @ vector, we can't just write f > 0, we have to
consider derivatives with respect to all the x;.

@ The Hessian of f is the matrix that captures all the possible second

derivatives:
Ptloxox, Ptloxoxe ---  oxiox,
Ptloxox,  Ptloxeoxe -+ O oxeox,
Hf = .
o f/c’?xnc’?)q o f/ax,,ax2 .. 8f/axnaxn
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ Another way to define convexity is to use the Hessian of f(x).

@ Since x = [xq, X2, ..., Xy] is @ vector, we can't just write f > 0, we have to
consider derivatives with respect to all the x;.

@ The Hessian of f is the matrix that captures all the possible second

derivatives:
Ptloxox, Ptloxoxe ---  oxiox,
Ptloxox,  Ptloxeoxe -+ O oxeox,
Hf = .
o f/c’?xnc’?)q o f/ax,,ax2 .. 8f/axnaxn

@ Let's see how we can use that.
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) =~ f(x) + ef’(x).
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?
@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) =~ f(x) + ef’(x).
@ And the second-order (quadratic) approximation
f(x +¢€) = f(x) + ef (x) + (e/2)f"(x).
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) =~ f(x) + ef’(x).

@ And the second-order (quadratic) approximation
f(x +¢) = f(x) + ef' (x) + (e/2)f"(x).

@ Now, if x € R" and e is also € R", we had the first-order approximation:

f(x +€) = f(x) + €- VFf(x).
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) =~ f(x) + ef’(x).
@ And the second-order (quadratic) approximation
f(x +¢) = f(x) + ef' (x) + (e/2)f"(x).
@ Now, if x € R" and e is also € R", we had the first-order approximation:
f(x +€) = f(x) + €- VFf(x).

@ What is the second-order approximation?
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) =~ f(x) + ef’(x).

@ And the second-order (quadratic) approximation
f(x +¢) = f(x) + ef' (x) + (e/2)f"(x).

@ Now, if x € R” and ¢ is also € R", we had the first-order approximation:

f(x +€) = f(x) + €- VFf(x).
@ What is the second-order approximation?
@ With a bit more algebra, we can prove that it is:

f(X + €) =~ f(x) + € - VF(x) + (1/2)e (Hf(x))e.
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) = f(x) + ef’(x).
@ And the second-order (quadratic) approximation
f(x +¢) = f(x) + ef' (x) + (¢/2)f"(x).
@ Now, if x € R” and ¢ is also € R", we had the first-order approximation:
f(x +€) = f(x) + - VFf(x).

@ What is the second-order approximation?
@ With a bit more algebra, we can prove that it is:

f(Xx +€) = f(x) 4+ €- VF(x) + (1/2)e (Hf(x))e.
@ So what should the analogous statement be to f”/(x) > 0?
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?

@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) =~ f(x) + ef’(x).
@ And the second-order (quadratic) approximation
f(x +¢) = f(x) + ef' (x) + (e/2)f"(x).
@ Now, if x € R" and e is also € R", we had the first-order approximation:
f(x +€) = f(x) + €- VFf(x).

@ What is the second-order approximation?
@ With a bit more algebra, we can prove that it is:

f(X + €) =~ f(x) + € - VF(x) + (1/2)e (Hf(x))e.

@ The analogous statement to f/(x) > 0 is that for any vector e € R", we
have " (Hf(x))e > 0, which is the same as saying that Hf(x) is a positive
semi-definite matrix.
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Convex functions

For a univariate function f(x) (where x € R), you can test if it's convex by
checking if f(x) > 0. What should it mean for a multivariate function f(x) to
be convex, where x € R” is a vector and f(x) is a scalar?
@ We saw that for x € R, we had the first-order (linear) approximation
f(x +¢€) =~ f(x) + ef’(x).
@ And the second-order (quadratic) approximation
f(x +¢€) = f(x) + ef (x) + (e/2)f"(x).
@ Now, if x € R" and e is also € R", we had the first-order approximation:

f(x +€) = f(x) + €- VFf(x).

@ What is the second-order approximation?
@ With a bit more algebra, we can prove that it is:

f(X + €) =~ f(x) + € - VF(x) + (1/2)e (Hf(x))e.

@ The analogous statement to f/(x) > 0 is that for any vector e € R", we
have " (Hf(x))e > 0, which is the same as saying that Hf(x) is a positive
semi-definite matrix.

@ Equivalently (though we won't prove this): Hf(x) has all eigenvalues > 0.
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Gradient descent in convex functions
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Gradient descent in convex functions
@ For a convex function f, any local minimum of f is a global minimum of f.

Starting pt.

Local minima

Global minima
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Gradient descent in convex functions

@ For a convex function f, any local minimum of f is a global minimum of f.

Starting pt.

Local minima

Global minima

@ Informal way of seeing this: Suppose towards contradiction we have a
local minimum x and a global minimum y with f(y) < f(x).
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Gradient descent in convex functions

@ For a convex function f, any local minimum of f is a global minimum of f.

Starting pt.

Local minima

Global minima

@ Informal way of seeing this: Suppose towards contradiction we have a
local minimum x and a global minimum y with f(y) < f(x).

@ Then, the segment between x and y has to go below the graph of f, since
x is a local minimum.
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Gradient descent in convex functions

@ For a convex function f, any local minimum of f is a global minimum of f.

Starting pt.

Local minima

Global minima

@ Informal way of seeing this: Suppose towards contradiction we have a
local minimum x and a global minimum y with f(y) < f(x).

@ Then, the segment between x and y has to go below the graph of f, since
x is a local minimum.

@ That means f can’t be convex!
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