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Problem
Describe three dice A,B,C with numbers on their sides, such that if we roll
them all, A is likely to be higher than B, B is likely to be higher than C, and C
is likely to be higher than A.

(Please don’t post your ideas in the chat just yet, we’ll discuss the problem
soon in class.)
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Course Announcements

Office hours at normal time (10 am Montreal) Friday.
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Unsolved problems
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Goldbach’s conjecture

Every even integer greater than 2 is the sum of two primes.
For example: 100 = 89 + 11.
Conjectured in 1742.
Has been checked up to 1018.
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Collatz conjecture

If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,

28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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Collatz conjecture

If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,

7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
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Collatz conjecture

If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,

22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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For example, starting at 9:

9,28,14,7,22,

11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
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If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,

34,17,52,26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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If you take any positive integer and recursively (i) if odd, multiply by 3 and
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For example, starting at 9:

9,28,14,7,22,11,34,

17,52,26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,34,17,

52,26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).

David Rolnick COMP 761: Final Class Dec 3, 2020 6 / 20



Collatz conjecture

If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,34,17,52,

26,13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
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For example, starting at 9:
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13,40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
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add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,34,17,52,26,13,

40,20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,34,17,52,26,13,40,

20,10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
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add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,34,17,52,26,13,40,20,

10,5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,34,17,52,26,13,40,20,10,

5,16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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Collatz conjecture

If you take any positive integer and recursively (i) if odd, multiply by 3 and
add 1, (ii) if even, divide by 2, then eventually you reach 1.
For example, starting at 9:

9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,

16,8,4,2,1.

Conjecture posed in 1937.
Paul Erdős: “Mathematics may not be ready for such problems.”
Has been tested up to 268 (about 300 quintillion).
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Matrix multiplication

We saw in class the multiplying m × n and n × p matrices can be done in
time Θ(mnp).
If m = n = p, that is Θ(n3), but that is not necessarily the fastest.
Why does the fastest time for multiplying square matrices have to be
Ω(n2)?
We have to look at all n2 entries, so it’s at least n2, somewhere between
n2 and n3.
Currently, the best known algorithm is O(n2.3728596).
We don’t know if this is the best.
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Graph isomorphism problem

Two graphs are said to be isomorphic if we can reorder the vertices so
they line up.

Let ISOMORPHISM(G,H) be the problem of working out whether two
graphs G and H are isomorphic.
May be in P, may be NP-complete, or neither (not known).
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Honeycomb conjecture

If we have to divide a flat surface into equal areas, a hexagonal
honeycomb is the method with the least total perimeter:

Was conjectured in 36 BCE, has been used by honeybees long before
that :)
This one was actually proven in 1999!
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Surprising math / paradoxes
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All horses are the same color
Let’s prove that every horse is the same color.

We’ll use induction – showing that any group of n horses is the same
color.
Base case of just 1 horse – clearly works.
Now suppose that any group of n horses is the same color.
Suppose we have a group S with n + 1 horses – need to show all the
same color.
Let’s consider the set S1 where we take out the first horse from S, and
the set S2 where we take out the second horse from S.
Both S1 and S2 contain n horses, so by induction we know all the horses
in each one are the same color.
But since they overlap, the colors must be the same! So all the horses in
S are the same color. Done with the induction.
What is wrong with this argument??
S1 and S2 only overlap if n > 1, so even though the base case of n = 1
works, we can’t go from 1 to 2.
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Simpson’s Paradox

Two new pet medicines, A and B, are tried on some cats and dogs.
These are the rates at which the medicines are successful:
So medicine B performs better than A in cats and also performs better
than A in dogs.
Now let’s add another row to the table with totals.
Wait, now medicine A is performing better? What happened?
The reason this happened was because for A, the tests happened mostly
in cats (where both medicines perform well), while for B, the tests
happened mostly in dogs (where neither medicine performs well).
This is one reason why it is important to break out confounding variables
in studies.
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Simpson’s Paradox – another example

This is an (imaginary) plot of amount of sleep vs life expectancy:

If we do a linear fit for all the data (black dashed line), we get that more
sleep means lower life expectancy.
But we can also break it into two groups, the red group and the blue
group.
Turns out the red group is dogs and the blue group is people.
Dogs sleep more than people overall, and have a lower life expectancy.
For each group individually, more sleep is good.
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Non-transitive dice

Suppose we have 3 dice:

A: sides 2, 2, 4, 4, 9, 9.
B: sides 1, 1, 6, 6, 8, 8.
C: sides 3, 3, 5, 5, 7, 7.

What is the probability that A rolls a higher number than B?
A > B if we have (2,1), (4,1), (9,1), (9,6), or (9,8) – so 5/9 probability.
Similarly, B > C if we have (6,3), (6,5), (8,3), (8,5), or (8,7) – again 5/9.
And likewise 5/9 probability for C > A.

So each of the dice is likely to beat the next one in the list!
Not impossible, just counter-intuitive.
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Mathematical art
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Based on dodecahedron
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Cardioid
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One-sheet hyperboloid
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Tessellations
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Penrose tiling
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