See also my Google Scholar.
Conference Publications
- M. Teng, A. Elmustafa, B. Akera, Y. Bengio, H. Radi Abdelwahed, H. Larochelle, D. Rolnick, SatBird: A dataset for bird species distribution modeling using remote sensing and citizen science data, Conference on Neural Information Processing Systems (NeurIPS) 2023.
- J. Kaltenborn, C.E.E. Lange, V. Ramesh, P. Brouillard, Y. Gurwicz, J. Runge, P. Nowack, D. Rolnick, ClimateSet: A large-scale climate model dataset for machine learning, Conference on Neural Information Processing Systems (NeurIPS) 2023.
- M. Mueller, T. Vlaar, D. Rolnick, M. Hein, Normalization layers are all that sharpness-aware minimization needs, Conference on Neural Information Processing Systems (NeurIPS) 2023.
- A. Duval, V. Schmidt, A. Hernández-García, F.D. Malliaros, Y. Bengio, S. Miret, D. Rolnick, FAENet: Frame Averaging Equivariant GNNs for materials modeling, International Conference on Machine Learning (ICML) 2023.
- G. Iyer, B. Hanin, D. Rolnick, Maximal initial learning rates in deep ReLU networks, International Conference on Machine Learning (ICML) 2023.
- E. Grigsby, K. Lindsey, D. Rolnick, Hidden symmetries of ReLU networks, International Conference on Machine Learning (ICML) 2023.
-
C. Boine, D. Rolnick, General purpose AI systems in the AI Act: trying to fit a square peg into a round hole, We Robot 2023 (best paper).
- R.D. Lange, J. Matelsky, X. Wang, D. Kwok, D. Rolnick, K.P. Kording, Deep networks as paths on the manifold of neural representations, Proceedings of the Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML) 2023.
- A.S. Luccioni, D. Rolnick, Bugs in the data: How ImageNet misrepresents biodiversity, AAAI 2023.
- S. Cohan, N.H. Kim, D. Rolnick, M. van de Panne, Understanding the evolution of linear regions in deep reinforcement learning, Conference on Neural Information Processing Systems (NeurIPS) 2022.
- B. Hanin, R. Jeong, D. Rolnick, Deep ReLU networks preserve expected length, International Conference on Learning Representations (ICLR) 2022.
- S. Topan, D. Rolnick, X. Si, Techniques for symbol grounding with SATNet, Conference on Neural Information Processing Systems (NeurIPS) spotlight, 2021.
- S. Rühling Cachay, V. Ramesh, J.N.S. Cole, H. Barker, D. Rolnick, ClimART: A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models, Conference on Neural Information Processing Systems (NeurIPS), 2021.
- P.L. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with hard constraints, International Conference on Learning Representations (ICLR) 2021.
- D. Rolnick, K.P. Körding, Reverse-engineering deep ReLU networks, International Conference on Machine Learning (ICML) 2020.
- D. Rolnick, A. Ahuja, J. Schwarz, T.P. Lillicrap, G. Wayne, Experience replay for continual learning, Conference on Neural Information Processing Systems (NeurIPS) 2019.
- B. Hanin, D. Rolnick, Deep ReLU networks have surprisingly few activation patterns, Conference on Neural Information Processing Systems (NeurIPS) 2019.
- B. Hanin, D. Rolnick, Complexity of linear regions in deep networks, International Conference on Machine Learning (ICML) 2019.
- D. Rolnick, J. Pouget-Abadie, K. Aydin, S. Kamali, V. Mirrokni, A. Najmi, Randomized experimental design via geographic clustering, Conference on Knowledge Discovery and Data Mining (KDD) 2019.
- A. Benjamin, D. Rolnick, K. Kording, Measuring and regularizing networks in function space, International Conference on Learning Representations (ICLR) 2019.
- Y. Meirovitch, L. Mi, H. Saribekyan, A. Matveev, D. Rolnick, C. Wierzynski, N. Shavit, Cross-classification clustering: An efficient multi-object tracking technique for 3-D instance segmentation in connectomics, Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
- B. Hanin, D. Rolnick, How to start training: The effect of initialization and architecture, Conference on Neural Information Processing Systems (NeurIPS) 2018.
- D. Rolnick, M.Tegmark, The power of deeper networks for expressing natural functions, International Conference on Learning Representations (ICLR) 2018.
- J.A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, and J. Swenson, Graph-coloring ideals: Nullstellensatz certificates, Groebner bases for chordal graphs, and hardness of Groebner bases, International Symposium on Symbolic and Algebraic Computation (ISSAC) 2015.
Journal Publications
- P. Harder, Q. Yang, V. Ramesh, P. Sattigeri, A. Hernandez-Garcia, C. Watson, D. Szwarcman, D. Rolnick, Hard-Constrained Deep Learning for Climate Downscaling, to appear in Journal of Machine Learning Research (JMLR), 2023.
- L. Kaack, P.L. Donti, E. Strubell, G. Kamiya, F. Creutzig, D. Rolnick, Aligning artificial intelligence with climate change mitigation, Nature Climate Change, 2022.
- R.D. Lange, D. Rolnick, K.P. Kording, Clustering units in neural networks: upstream vs downstream information, Transactions on Machine Learning Research (TMLR), 2022.
- D. Rolnick, P.L. Donti, L.H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A.S. Ross, N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown, A. Luccioni, T. Maharaj, E.D. Sherwin, S.K. Mukkavilli, K.P. Kording, C. Gomes, A.Y. Ng, D. Hassabis, J.C. Platt, F. Creutzig, J. Chayes, Y. Bengio, Tackling climate change with machine learning, ACM Computing Surveys 55(2), 2022.
- P. Chuard, J. Garard, K. Schulz, N. Kumarasinghe, D. Rolnick, D. Matthews, A portrait of the different configurations between digitally-enabled innovations and climate governance, Earth System Governance 13, 2022.
- F. Creutzig, D. Acemoglu, X. Bai, P.N. Edwards, M.J. Hintz, L.H. Kaack, S. Kilkis, S. Kunkel, A. Luers, N. Milojevic-Dupont, D. Rejeski, J. Renn, D. Rolnick, C. Rosol, D. Russ, T. Turnbull, E. Verdolini, F. Wagner, C. Wilson, A. Zekar, M. Zumwald, Digitalization and the anthropocene, Annual Review of Environment and Resources 47, 2022.
- L.A. Reisch, L. Joppa, P. Howson, A. Gil, P. Alevizou, N. Michaelidou, R. Appiah-Campbell, T. Santarius, S. Köhler, M. Pizzol, P.-J. Schweizer, D. Srinivasan, L.H. Kaack, P.L. Donti, D. Rolnick, Digitizing a sustainable future, One Earth 4(6):768-771, 2021.
- C. Hillar, R. Taubman, T. Chan, D. Rolnick, Hidden hypergraphs, error-correcting codes, and critical learning in Hopfield networks, Entropy, 2021.
- D. Rolnick, E. Dyer, Generative models and abstractions for large-scale neuroanatomy datasets, Current Opinion in Neurobiology, 2019.
- G. Spencer, D. Rolnick, On the robust hardness of Gröbner basis computation, Journal of Pure and Applied Algebra 223(5):2080-2100, 2019.
- H. Lin, M. Tegmark, D. Rolnick, Why does deep and cheap learning work so well?, Journal of Statistical Physics 168(6):1223-1247, 2017.
- D. Rolnick, P. Soberón, Quantitative (p,q)-theorems in combinatorial geometry, Discrete Mathematics 340(10):2516-2527, 2017.
- J.A. De Loera, R.N. La Haye, D. Rolnick, and P. Soberón, Quantitative Tverberg theorems over lattices and other discrete sets, Discrete & Computational Geometry 58(2):435-448, 2017.
- J.A. De Loera, R.N. La Haye, D. Rolnick, and P. Soberón, Quantitative combinatorial geometry for continuous parameters, Discrete & Computational Geometry 57(2):318-334, 2017.
- D. Rolnick, On the classification of Stanley sequences, European Journal of Combinatorics 59:51-70, 2017.
- R.A. Moy and D. Rolnick, Novel structures in Stanley sequences, Discrete Mathematics 339(2):689-698, 2016.
- N. Golowich and D. Rolnick, Acyclic subgraphs of planar digraphs, Electronic Journal of Combinatorics 22(3):P3.7, 2015.
- D. Rolnick and P. Venkataramana, On the growth of Stanley sequences, Discrete Mathematics 338(11):1928-1937, 2015.
- D. Rolnick, The on-line degree Ramsey number of cycles, Discrete Mathematics 313(2):2084-2093, 2013.
- D. Rolnick, Trees with an on-line degree Ramsey number of four, Electronic Journal of Combinatorics 18(1):P173, 2011.
Technical Reports and Book Chapters
- S. Koseki, S. Jameson, G. Farnadi, D. Rolnick, C. Régis, J.-L. Denis, et al., AI & cities: Risks, applications and governance, UN Habitat, 2022.
- D. Rolnick, Chapter 10 – Insights: AI and decarbonisation in O. Inderwildi, M. Kraft, eds. Intelligent Decarbonisation, Springer 2022.
- P. Clutton-Brock, D. Rolnick, P.L. Donti, L.H. Kaack, T. Maharaj, A. Luccioni, H. Prasanna Das, C. Hodes, V. Dignum, M. Kwiatkowska, R. Chatila, N. Miailhe, Climate change and AI: Recommendations for government action, Global Partnership on AI (GPAI), 2021.
- L.H. Kaack, P.L. Donti, E. Strubell, D. Rolnick, Artificial Intelligence and climate change: Opportunities, considerations, and policy levers to align AI with climate change goals, Heinrich Böll Foundation E-Paper, 2020.
Preprints and Workshop Papers
- A. Ouaknine, T. Kattenborn, E. Laliberté, D. Rolnick, OpenForest: A data catalogue for machine learning in forest monitoring, preprint arXiv:2311.00277, 2023.
- A. Carbonero, A. Duval, V. Schmidt, S. Miret, A. Hernández-García, Y. Bengio, D. Rolnick, On the importance of catalyst-adsorbate geometric relative information when predicting relaxed energy, NeurIPS Workshop on AI for Accelerated Materials Design, 2023.
- A. Jain, F. Cunha, M. Bunsen, L. Pasi, A. Viklund, M. Larrivée, D. Rolnick, A machine learning pipeline for automated insect monitoring, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2023.
- C. Winkler, P. Harder, D. Rolnick, Climate variable downscaling with conditional normalizing flows, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2023.
- J. Boussard, C. Nagda, J. Kaltenborn, C. Lange, Y. Gurwicz, P. Nowack, D. Rolnick, Towards causal representations of climate model data, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2023.
- Y. Chen, D. Rolnick, Understanding insect range shifts with out-of-distribution detection, NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2023.J. González-Abad, Á. Hernández-García, P. Harder, D. Rolnick, J.M. Gutiérrez, Multi-variable Hard Physical Constraints for Climate Model Downscaling, preprint arXiv:2308.01868, 2023.
- G. Tseng, I. Zvonkov, M. Purohit, D. Rolnick, H. Kerner, Lightweight, pre-trained Transformers for remote sensing timeseries, preprint arXiv:2304.14065, 2023.
- Q. Yang, P. Harder, V. Ramesh, A. Hernandez-Garcia, D. Szwarcman, P. Sattigeri, C.D. Watson, D. Rolnick, Fourier neural operators for arbitrary resolution climate data downscaling, ICLR Workshop on Tackling Climate Change with Machine Learning, 2023.
- G. Tseng, K. Sinkovics, T. Watsham, D. Rolnick, T.C.~Walters, Semi-supervised object detection for agriculture, AAAI workshop on AI for Agriculture and Food Systems, 2023.
- A. Duval, V. Schmidt, A. Hernández-García, S. Miret, Y. Bengio, D. Rolnick, PhAST: Physics-Aware, Scalable, and Task-specific GNNs for accelerated catalyst design, NeurIPS workshop on AI for Accelerated Materials Design, 2022.
- G. Kerg, S. Mittal, D. Rolnick, Y. Bengio, B. Richards, G. Lajoie, On neural architecture inductive biases for relational tasks, preprint arXiv:2206.05056, 2022.
- G. Tseng, H. Kerner, D. Rolnick, TIML: Task-Informed Meta-Learning for agriculture, preprint arXiv:2202.02124, 2022.
- M. Lin, D. Rolnick, Detecting abandoned oil wells using machine learning and semantic segmentation, spotlight at NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2021.
- M. Skreta, S. Luccioni, D. Rolnick, Spatiotemporal features improve fine-grained butterfly image classification, spotlight at NeurIPS Workshop on Tackling Climate Change with Machine Learning, 2020.
- R. Farhoodi, D. Rolnick, K. Kording, Neuron dendrograms uncover asymmetrical motifs, Computational and Systems Neuroscience (Cosyne) 2018.
- D. Rolnick, A. Veit, S. Belongie, N. Shavit, Deep learning is robust to massive label noise, preprint arXiv:1705.10694, 2017.
- D. Rolnick, Y. Meirovitch, T. Parag, H. Pfister, V. Jain, J.W. Lichtman, E.S. Boyden, N.~Shavit, Morphological error detection in 3D segmentations, Computational and Systems Neuroscience (Cosyne) 2018.
- D. Rolnick, J. Bernstein, I. Dasgupta, H. Sompolinsky, Markov transitions between attractor states in a recurrent neural network, Computational and Systems Neuroscience (Cosyne) 2017.
- Y. Meirovitch, A. Matveev, H. Saribekyan, D. Budden, D. Rolnick, G. Odor, S. Knowles-Barley, T. Jones, H. Pfister, J.W. Lichtman, N. Shavit, A multi-pass approach to large-scale connectomics, preprint arXiv:1612.02120, 2016.
- D. Rolnick, P. Soberón, Algorithmic aspects of Tverberg’s theorem, preprint arXiv:1601.03083, 2016.